Normalized defining polynomial
\( x^{20} - 2 x^{19} - 54 x^{17} + 199 x^{16} - 2748 x^{15} + 11855 x^{14} + 6363 x^{13} + 124321 x^{12} - 356967 x^{11} - 557925 x^{10} - 9062519 x^{9} + 34025996 x^{8} + 88733076 x^{7} - 64052500 x^{6} - 719171544 x^{5} + 789030112 x^{4} - 10400245765 x^{3} + 52659896224 x^{2} + 185883345808 x + 395131293061 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22568047146271109644424925266534237=7^{15}\cdot 11^{9}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} + \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{7}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{3}{8} a^{8} + \frac{5}{16} a^{7} + \frac{1}{8} a^{6} - \frac{7}{16} a^{5} + \frac{3}{8} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{16} a - \frac{7}{16}$, $\frac{1}{64} a^{18} + \frac{3}{64} a^{16} + \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{5}{16} a^{13} + \frac{7}{64} a^{12} - \frac{27}{64} a^{11} + \frac{1}{8} a^{9} - \frac{21}{64} a^{8} - \frac{9}{64} a^{7} - \frac{5}{64} a^{6} - \frac{17}{64} a^{5} - \frac{5}{64} a^{4} - \frac{21}{64} a^{3} - \frac{25}{64} a^{2} + \frac{5}{32} a - \frac{23}{64}$, $\frac{1}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{19} - \frac{119317299249676775195368070127154216452153733691840129643984878094365411183387053565540088026019947333643}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{18} - \frac{23358492299817059690257518681160289803252195873400969626584478068266337546207990612834240157779661884445}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{17} + \frac{5416664515388633889805642154141336014074264792546841717852913439697648665993395871231212553827943063308815}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{16} + \frac{95526994063842491313272520203967177865744384545094161238325404584578721186797191891280866162734654941567}{637788431461410342068227818624928379715006929210074207985028202391581148147686222147073928277498915444462} a^{15} - \frac{7332501259959014871911271203592902976591418793940127237348362909057329393912809827009626828020271270486479}{20409229806765130946183290195997708150880221734722374655520902476530596740725959108706365704879965294222784} a^{14} + \frac{25717069120024508079485773192452986713464741930959974743825789083833723455832239769441915810112592530663787}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{13} + \frac{4539112424688237595563344547036694507756847008530921152704990414947939491633982912221481262150778956551107}{10204614903382565473091645097998854075440110867361187327760451238265298370362979554353182852439982647111392} a^{12} - \frac{38909529361896942419352641366084364889976410551131727575420924804435110199221884543042959321666798628078519}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{11} + \frac{1583328466909744285527123606628617270538796672534954456337309678656570270953951772455248538751431444790633}{10204614903382565473091645097998854075440110867361187327760451238265298370362979554353182852439982647111392} a^{10} + \frac{40095712211060731735813829432831805764925322337809134122458446671923004102537180235416433204683943693076627}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{9} - \frac{18130848617649140931734083173008227873479432003264300787239148672786238865821679050884156495492615187631889}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{8} - \frac{10932868921099300619144163487189186038430568496165036027301440466266556242176467789532164578544881936722657}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{7} - \frac{6516419452107782613794708145759838599307393352519862264230505269981674668749503520301631744878474035685229}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{6} + \frac{6355354304543490808323541316479875197373067214306594066631476649190305191962573213732465125908186929044939}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{5} - \frac{19661289634073768079603172540459597374866827045606561373392804466011876454273102008177976507294330093971119}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{4} - \frac{7393165265638561381916214429626592690021919115840532356670706361089365436120599461462909194083319674187241}{40818459613530261892366580391995416301760443469444749311041804953061193481451918217412731409759930588445568} a^{3} + \frac{29113544224400095889998675166703128330265746749879390977462195522346592208974626858511620634399835240123933}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a^{2} - \frac{5589252327375152012632433373116149751049843651327960131893307682911390526591030489825536915746428474441317}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136} a + \frac{22255329852239956243670323942343906748389153349994151701523629905753671335959132977555445329228703879893853}{81636919227060523784733160783990832603520886938889498622083609906122386962903836434825462819519861176891136}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.1090397.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 17 | Data not computed | ||||||