Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 148 x^{17} + 453 x^{16} - 1158 x^{15} + 2542 x^{14} - 4954 x^{13} + 9028 x^{12} - 15318 x^{11} + 23914 x^{10} - 33626 x^{9} + 43131 x^{8} - 48412 x^{7} + 45784 x^{6} - 34488 x^{5} + 21703 x^{4} - 10888 x^{3} + 4356 x^{2} - 1328 x + 464 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22502679947598717278426884000000=2^{8}\cdot 5^{6}\cdot 17^{8}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{16} - \frac{1}{10} a^{15} + \frac{1}{20} a^{14} - \frac{1}{5} a^{13} - \frac{1}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{1}{10} a^{5} + \frac{7}{20} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{40} a^{17} - \frac{1}{40} a^{16} - \frac{1}{40} a^{15} - \frac{3}{40} a^{14} + \frac{1}{10} a^{13} - \frac{1}{5} a^{12} + \frac{1}{20} a^{11} - \frac{2}{5} a^{9} - \frac{1}{4} a^{8} + \frac{2}{5} a^{7} - \frac{1}{4} a^{6} + \frac{9}{40} a^{5} + \frac{7}{40} a^{4} + \frac{3}{8} a^{3} + \frac{13}{40} a^{2} + \frac{1}{20} a + \frac{1}{10}$, $\frac{1}{400} a^{18} - \frac{1}{80} a^{17} - \frac{9}{400} a^{16} - \frac{1}{80} a^{15} + \frac{11}{100} a^{14} - \frac{7}{50} a^{13} - \frac{11}{200} a^{12} + \frac{21}{100} a^{11} + \frac{7}{100} a^{10} - \frac{9}{40} a^{9} + \frac{23}{100} a^{8} - \frac{9}{40} a^{7} - \frac{67}{400} a^{6} + \frac{47}{400} a^{5} - \frac{197}{400} a^{4} - \frac{77}{400} a^{3} + \frac{7}{40} a^{2} + \frac{7}{20} a + \frac{6}{25}$, $\frac{1}{5948701560530402853879701600} a^{19} - \frac{1694076835587081150617413}{5948701560530402853879701600} a^{18} + \frac{73174692075590513607725911}{5948701560530402853879701600} a^{17} + \frac{65995918575395497842979647}{5948701560530402853879701600} a^{16} + \frac{14756636869645112350611323}{743587695066300356734962700} a^{15} + \frac{19499503908994309151716907}{371793847533150178367481350} a^{14} - \frac{585781783602622782725428447}{2974350780265201426939850800} a^{13} + \frac{10218020421009110195355147}{59487015605304028538797016} a^{12} - \frac{36406777934271455026909511}{1487175390132600713469925400} a^{11} + \frac{367975044980977342745123883}{2974350780265201426939850800} a^{10} + \frac{26791438539444658804275013}{1487175390132600713469925400} a^{9} + \frac{637166486918789671871552747}{2974350780265201426939850800} a^{8} - \frac{1611792388349617409006838387}{5948701560530402853879701600} a^{7} - \frac{2778197871609317672330501537}{5948701560530402853879701600} a^{6} - \frac{9303577625996539227677933}{5948701560530402853879701600} a^{5} + \frac{1275560998675447863847174679}{5948701560530402853879701600} a^{4} + \frac{1029624273639046086993352893}{2974350780265201426939850800} a^{3} - \frac{80098402046757379139809979}{297435078026520142693985080} a^{2} + \frac{330809617753065379726023}{10048482365760815631553550} a - \frac{31929882746697636648652944}{185896923766575089183740675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55196577.556 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6160324.1, 10.2.4743698973122000.2, 10.2.189747958924880.1, 10.6.948739794624400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |