Normalized defining polynomial
\( x^{20} - 2 x^{19} - 20 x^{18} + 40 x^{17} + 247 x^{16} - 412 x^{15} - 1048 x^{14} + 1552 x^{13} + 3039 x^{12} - 2670 x^{11} - 4608 x^{10} + 2708 x^{9} + 4444 x^{8} - 1252 x^{7} - 1796 x^{6} + 478 x^{5} + 405 x^{4} - 136 x^{3} - 16 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2243390479903105373955109683200000=2^{30}\cdot 5^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{718118441} a^{18} - \frac{300283699}{718118441} a^{17} + \frac{144942748}{718118441} a^{16} - \frac{200195267}{718118441} a^{15} + \frac{248425198}{718118441} a^{14} - \frac{13507398}{718118441} a^{13} + \frac{267746316}{718118441} a^{12} - \frac{134665694}{718118441} a^{11} - \frac{292571811}{718118441} a^{10} - \frac{125664316}{718118441} a^{9} + \frac{111949152}{718118441} a^{8} - \frac{140894223}{718118441} a^{7} + \frac{315291970}{718118441} a^{6} + \frac{176751592}{718118441} a^{5} + \frac{114336927}{718118441} a^{4} + \frac{264959620}{718118441} a^{3} - \frac{194027970}{718118441} a^{2} + \frac{150315930}{718118441} a - \frac{298511441}{718118441}$, $\frac{1}{217149815169654844769} a^{19} - \frac{46150269302}{217149815169654844769} a^{18} - \frac{86821539462652254666}{217149815169654844769} a^{17} + \frac{59534038269066024595}{217149815169654844769} a^{16} - \frac{41310317007674331842}{217149815169654844769} a^{15} + \frac{15835002835756491889}{217149815169654844769} a^{14} + \frac{244966185457666317}{3680505341858556691} a^{13} - \frac{17405651776310195994}{217149815169654844769} a^{12} + \frac{49125672354581811610}{217149815169654844769} a^{11} + \frac{91363277043324401185}{217149815169654844769} a^{10} + \frac{80336313548446782556}{217149815169654844769} a^{9} - \frac{1426467870647714524}{12773518539391461457} a^{8} + \frac{68073236367966229379}{217149815169654844769} a^{7} - \frac{27501861943946235847}{217149815169654844769} a^{6} + \frac{73215397969135370418}{217149815169654844769} a^{5} - \frac{68289544919741351746}{217149815169654844769} a^{4} - \frac{63819302535866507670}{217149815169654844769} a^{3} + \frac{76873908335064564990}{217149815169654844769} a^{2} + \frac{53887273218792498827}{217149815169654844769} a + \frac{52286769722701206854}{217149815169654844769}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{218810443}{718118441} a^{19} - \frac{290127342}{718118441} a^{18} - \frac{4647839374}{718118441} a^{17} + \frac{5758658434}{718118441} a^{16} + \frac{59466283737}{718118441} a^{15} - \frac{52831506054}{718118441} a^{14} - \frac{284054379535}{718118441} a^{13} + \frac{175899403202}{718118441} a^{12} + \frac{866407340638}{718118441} a^{11} - \frac{100841695060}{718118441} a^{10} - \frac{1318291791828}{718118441} a^{9} - \frac{147612079192}{718118441} a^{8} + \frac{1232468388953}{718118441} a^{7} + \frac{438052862088}{718118441} a^{6} - \frac{433042528442}{718118441} a^{5} - \frac{178007687462}{718118441} a^{4} + \frac{86984200700}{718118441} a^{3} + \frac{28201762326}{718118441} a^{2} - \frac{8248433487}{718118441} a - \frac{1540727903}{718118441} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85215123.6135 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.320.1, 5.5.160801.1, 10.0.26477528679424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.0.1 | $x^{10} + x^{2} - x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||