Normalized defining polynomial
\( x^{20} - 5 x^{19} + 33 x^{18} - 56 x^{17} + 264 x^{16} - 132 x^{15} + 1608 x^{14} + 355 x^{13} + 6315 x^{12} + 5561 x^{11} + 19739 x^{10} + 18482 x^{9} + 33800 x^{8} + 32094 x^{7} + 40751 x^{6} + 29511 x^{5} + 19191 x^{4} + 6594 x^{3} + 1781 x^{2} + 44 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22416185558603163911567862205995264=2^{8}\cdot 3^{10}\cdot 33769^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{7972} a^{18} + \frac{1943}{7972} a^{17} + \frac{129}{3986} a^{16} + \frac{3885}{7972} a^{15} - \frac{727}{3986} a^{14} + \frac{2761}{7972} a^{13} - \frac{592}{1993} a^{12} + \frac{313}{3986} a^{11} + \frac{2103}{7972} a^{10} - \frac{3477}{7972} a^{9} + \frac{643}{3986} a^{8} - \frac{1865}{7972} a^{7} - \frac{577}{3986} a^{6} + \frac{2201}{7972} a^{5} - \frac{3429}{7972} a^{4} - \frac{1105}{3986} a^{3} - \frac{413}{3986} a^{2} - \frac{555}{3986} a + \frac{2429}{7972}$, $\frac{1}{3811687835811936641398573021901612} a^{19} - \frac{103871142275984940620203376001}{3811687835811936641398573021901612} a^{18} + \frac{132242815941009307635162678812037}{1905843917905968320699286510950806} a^{17} + \frac{173954732883682421966108137657273}{3811687835811936641398573021901612} a^{16} - \frac{722196936811132082250642962559129}{1905843917905968320699286510950806} a^{15} - \frac{1259648714513970791339122869326667}{3811687835811936641398573021901612} a^{14} - \frac{29885719190976215271316300790745}{952921958952984160349643255475403} a^{13} + \frac{714458212578991123143346167242569}{1905843917905968320699286510950806} a^{12} + \frac{4065927889646928657084895382051}{3811687835811936641398573021901612} a^{11} + \frac{1087894514774639637468690309594047}{3811687835811936641398573021901612} a^{10} - \frac{245454146275424841539701390227275}{1905843917905968320699286510950806} a^{9} - \frac{725662514107397271198746905298829}{3811687835811936641398573021901612} a^{8} - \frac{941162361163603223265620081440323}{1905843917905968320699286510950806} a^{7} + \frac{404156326187064575433328707257977}{3811687835811936641398573021901612} a^{6} - \frac{163314714683714646862784756463425}{3811687835811936641398573021901612} a^{5} + \frac{191176435622997334109689836551321}{1905843917905968320699286510950806} a^{4} + \frac{434925464000469036480869761491653}{1905843917905968320699286510950806} a^{3} + \frac{197323163836075173059197708315035}{1905843917905968320699286510950806} a^{2} + \frac{1466836361356266532074569260435293}{3811687835811936641398573021901612} a - \frac{235841418584039091889890618535868}{952921958952984160349643255475403}$
Class group and class number
$C_{3}\times C_{3}\times C_{72}$, which has order $648$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{48569551905713541770200495545}{1912537800206691741795571009484} a^{19} + \frac{244332412916720027960652321881}{1912537800206691741795571009484} a^{18} - \frac{402644978967003547115985352512}{478134450051672935448892752371} a^{17} + \frac{2770766017554862041123667635995}{1912537800206691741795571009484} a^{16} - \frac{6458946703171702578621608950083}{956268900103345870897785504742} a^{15} + \frac{6826249952625365064485179655637}{1912537800206691741795571009484} a^{14} - \frac{39199408159863311612647873508107}{956268900103345870897785504742} a^{13} - \frac{7391224629096244765072209803015}{956268900103345870897785504742} a^{12} - \frac{306808872521130513711234896578435}{1912537800206691741795571009484} a^{11} - \frac{260718717976897157319330729433059}{1912537800206691741795571009484} a^{10} - \frac{238222910690067438379870790654418}{478134450051672935448892752371} a^{9} - \frac{869940860274606054431729284201495}{1912537800206691741795571009484} a^{8} - \frac{810807153708523048078039452209161}{956268900103345870897785504742} a^{7} - \frac{1514345972867944977232909244613259}{1912537800206691741795571009484} a^{6} - \frac{1944504980740163627753113996116269}{1912537800206691741795571009484} a^{5} - \frac{691685588675157176768611807571727}{956268900103345870897785504742} a^{4} - \frac{225865276778598312105673341920643}{478134450051672935448892752371} a^{3} - \frac{75161372546187744210548503493162}{478134450051672935448892752371} a^{2} - \frac{84373185894742738649201920631727}{1912537800206691741795571009484} a - \frac{86001197015747151453837956449}{956268900103345870897785504742} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5520444.6153 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.135076.1, 10.0.4433662763568.1, 10.0.149720357862927792.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 33769 | Data not computed | ||||||