Normalized defining polynomial
\( x^{20} - x^{19} - 2 x^{18} - 12 x^{17} + 42 x^{16} - 98 x^{14} + 59 x^{13} - 31 x^{12} + 278 x^{11} - 170 x^{10} - 636 x^{9} + 1005 x^{8} - 597 x^{7} - 44 x^{6} + 617 x^{5} - 233 x^{4} - 462 x^{3} + 774 x^{2} - 432 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22392111040671733867877719121=17^{4}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{9} a^{12} - \frac{5}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{4}{9} a^{7} + \frac{7}{18} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{16} - \frac{1}{9} a^{14} - \frac{1}{6} a^{13} - \frac{1}{18} a^{12} - \frac{1}{3} a^{11} + \frac{4}{9} a^{10} + \frac{1}{6} a^{9} - \frac{1}{9} a^{8} - \frac{1}{6} a^{7} - \frac{5}{18} a^{6} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{7}{18} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{18} a^{17} - \frac{1}{18} a^{14} - \frac{1}{6} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{5}{18} a^{10} + \frac{2}{9} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{2}{9} a^{6} - \frac{4}{9} a^{4} + \frac{7}{18} a^{3} + \frac{1}{9} a^{2} - \frac{1}{2} a$, $\frac{1}{234} a^{18} + \frac{5}{234} a^{17} - \frac{1}{117} a^{16} - \frac{5}{234} a^{15} - \frac{16}{117} a^{14} + \frac{23}{234} a^{13} + \frac{2}{39} a^{12} + \frac{1}{6} a^{11} - \frac{3}{26} a^{10} + \frac{77}{234} a^{9} - \frac{34}{117} a^{8} + \frac{7}{18} a^{7} - \frac{31}{117} a^{6} + \frac{16}{117} a^{5} + \frac{5}{26} a^{4} - \frac{7}{78} a^{3} - \frac{19}{234} a^{2} + \frac{31}{78} a + \frac{6}{13}$, $\frac{1}{306667932688982487072294} a^{19} + \frac{102919691157377253881}{306667932688982487072294} a^{18} + \frac{3128295239047967746073}{153333966344491243536147} a^{17} - \frac{346593818850293153675}{102222644229660829024098} a^{16} + \frac{2678470733411467695011}{102222644229660829024098} a^{15} + \frac{1882101762302577594230}{17037107371610138170683} a^{14} + \frac{27596613570902369186095}{306667932688982487072294} a^{13} + \frac{19616916852912739047959}{306667932688982487072294} a^{12} - \frac{20068506284053567452314}{153333966344491243536147} a^{11} - \frac{31236708494913833734532}{153333966344491243536147} a^{10} - \frac{105539351240042786025419}{306667932688982487072294} a^{9} - \frac{8604275120263260870827}{34074214743220276341366} a^{8} - \frac{542366447973776575649}{51111322114830414512049} a^{7} + \frac{34683341515860390521627}{102222644229660829024098} a^{6} + \frac{131693790782337873678217}{306667932688982487072294} a^{5} - \frac{14427136389794444894275}{306667932688982487072294} a^{4} + \frac{70445309075864894104015}{306667932688982487072294} a^{3} - \frac{33776066806569467359355}{102222644229660829024098} a^{2} + \frac{8873775179717328221131}{34074214743220276341366} a + \frac{2126273664498799773901}{11358071581073425447122}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 870300.018994 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T87):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.6.7472661902689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||