Normalized defining polynomial
\( x^{20} - 4 x^{19} + 18 x^{18} - 54 x^{17} + 111 x^{16} - 231 x^{15} + 324 x^{14} - 357 x^{13} + 474 x^{12} - 348 x^{11} + 487 x^{10} - 1183 x^{9} + 1395 x^{8} - 1023 x^{7} + 1410 x^{6} - 1162 x^{5} - 269 x^{4} - 243 x^{3} + 468 x^{2} + 216 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22392111040671733867877719121=17^{4}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3411} a^{18} + \frac{290}{3411} a^{17} - \frac{248}{1137} a^{16} + \frac{132}{379} a^{15} + \frac{412}{1137} a^{14} + \frac{337}{1137} a^{13} - \frac{169}{379} a^{12} + \frac{445}{1137} a^{11} + \frac{341}{1137} a^{10} - \frac{329}{1137} a^{9} + \frac{127}{3411} a^{8} - \frac{853}{3411} a^{7} + \frac{85}{1137} a^{6} + \frac{550}{1137} a^{5} - \frac{244}{1137} a^{4} + \frac{755}{3411} a^{3} + \frac{1030}{3411} a^{2} + \frac{413}{1137} a + \frac{137}{379}$, $\frac{1}{28389291752786936888339114607} a^{19} + \frac{972267058131378152033399}{28389291752786936888339114607} a^{18} - \frac{160444248578772176539725244}{3154365750309659654259901623} a^{17} + \frac{693312016570734428422321504}{3154365750309659654259901623} a^{16} - \frac{3586539656165321515639496579}{9463097250928978962779704869} a^{15} + \frac{4338247489396195898310356992}{9463097250928978962779704869} a^{14} + \frac{33144125278548495800260451}{1051455250103219884753300541} a^{13} - \frac{602388990681231103050383912}{9463097250928978962779704869} a^{12} - \frac{958944917040187662762715921}{9463097250928978962779704869} a^{11} + \frac{2964519183507740268760532440}{9463097250928978962779704869} a^{10} - \frac{11543924705803163937958330943}{28389291752786936888339114607} a^{9} + \frac{2008296362101625952286414973}{28389291752786936888339114607} a^{8} - \frac{1036724714551885689531886867}{3154365750309659654259901623} a^{7} - \frac{3178828624122047920009569539}{9463097250928978962779704869} a^{6} - \frac{3402775323931453161209572615}{9463097250928978962779704869} a^{5} + \frac{7658644750308388156077669959}{28389291752786936888339114607} a^{4} + \frac{905742138076811484512396995}{28389291752786936888339114607} a^{3} - \frac{442779224476311893153432077}{1051455250103219884753300541} a^{2} + \frac{348053493218829316430835443}{1051455250103219884753300541} a - \frac{430197381309677473968650016}{1051455250103219884753300541}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1639379.50525 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T87):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.6.7472661902689.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||