Normalized defining polynomial
\( x^{20} - 5 x^{19} + 50 x^{18} - 110 x^{17} + 1370 x^{16} - 3619 x^{15} + 33025 x^{14} + 174325 x^{13} + 2145955 x^{12} + 8083750 x^{11} + 23745326 x^{10} - 34682135 x^{9} - 452982025 x^{8} - 2228991105 x^{7} - 5269012810 x^{6} - 4302198659 x^{5} + 26632021340 x^{4} + 130244452175 x^{3} + 322173998635 x^{2} + 490733138390 x + 401120497321 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22391715889879730530083179473876953125=5^{31}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{76} a^{17} + \frac{5}{76} a^{16} + \frac{15}{76} a^{15} - \frac{1}{4} a^{14} + \frac{3}{38} a^{13} - \frac{7}{76} a^{12} + \frac{3}{19} a^{11} - \frac{15}{76} a^{10} - \frac{27}{76} a^{9} + \frac{15}{38} a^{8} - \frac{7}{76} a^{7} - \frac{5}{38} a^{6} - \frac{5}{76} a^{5} - \frac{1}{76} a^{4} - \frac{7}{19} a^{3} + \frac{5}{19} a^{2} + \frac{23}{76} a - \frac{3}{19}$, $\frac{1}{152} a^{18} + \frac{9}{152} a^{16} - \frac{37}{152} a^{15} - \frac{4}{19} a^{14} - \frac{9}{76} a^{13} - \frac{29}{152} a^{12} - \frac{9}{76} a^{11} + \frac{5}{76} a^{10} + \frac{35}{76} a^{9} - \frac{31}{76} a^{8} + \frac{25}{152} a^{7} + \frac{13}{76} a^{6} - \frac{13}{38} a^{5} - \frac{1}{38} a^{4} - \frac{11}{152} a^{3} + \frac{37}{152} a^{2} - \frac{13}{152} a - \frac{35}{152}$, $\frac{1}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{19} - \frac{14631875886277043108342302656670615389644504068813892129337098174576201569298024898398100203440207}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276} a^{18} - \frac{58421832954286931337383004924039509884128780099233934843406398816167467452386334549289605364592685}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{17} - \frac{214798694912641685067298545218885150151981724176192901396389582890324581977179744218479065130058509}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{16} - \frac{763479524571345791833013761033238136060729328722320804860999633431493124562754251269859272649301267}{3206278707701231230637358755685695727504200067046605712683085029484921398591040965739628986807070069} a^{15} - \frac{579187868331790060133891740061340894389759809348580736894825244079930268038216451435102337560025738}{3206278707701231230637358755685695727504200067046605712683085029484921398591040965739628986807070069} a^{14} - \frac{6314019424488051776190330190111390533472726721429372900818895543327685874027241688732676894675001901}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{13} + \frac{1303307404578155264197176171914754416145970424970119743035865291935835726152990009425906546458764491}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276} a^{12} - \frac{860577145347341906771951259077767202837910995481060312482681571554187324282664607293750649474077777}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276} a^{11} + \frac{347809604048250558164132540265721320842360738391263783843542080363542466111993078145342540626017876}{3206278707701231230637358755685695727504200067046605712683085029484921398591040965739628986807070069} a^{10} - \frac{386231389888188641856837721188158626367666601797278151442886043622803520172888475329714899395774792}{3206278707701231230637358755685695727504200067046605712683085029484921398591040965739628986807070069} a^{9} + \frac{305238511394184407335545333747124925249924317454075289729685999742363318239464160613496121313551917}{884490677986546546382719656740881580001158639185270541429816559857909351335459576755759720498502088} a^{8} - \frac{4755515654713893028335698135729996214166498244158692958858001750882722542213375073165423154903449021}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276} a^{7} + \frac{588671422614771658459055402783471891889331086732558514517502261856314612274900386300121546151480309}{6412557415402462461274717511371391455008400134093211425366170058969842797182081931479257973614140138} a^{6} - \frac{2865683706103797466630630543057264885786207744384354618419496640449209725311025891049995329198012869}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276} a^{5} + \frac{4126212062908919649982650840494940033360835125207116084035684999082355566546203515979616695874805059}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{4} + \frac{8833642650722133806817290501640734895119735669336542315450843834551933570297667839754722144655690151}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{3} - \frac{5158599992548244408797174549905024983156723279523084792304626596970437806855346110177325000562079299}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a^{2} + \frac{10700871642350665364588686723243965267617378754240513088476237334533291181852247645797201702755142485}{25650229661609849845098870045485565820033600536372845701464680235879371188728327725917031894456560552} a - \frac{4219163428273382059224859517608525558721766364287580277459385391871400126114275913711061824873847187}{12825114830804924922549435022742782910016800268186422850732340117939685594364163862958515947228280276}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.171125.1, 5.1.78125.1, 10.2.30517578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $37$ | 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |