Normalized defining polynomial
\( x^{20} + 155 x^{18} + 8525 x^{16} + 227850 x^{14} + 3309250 x^{12} + 27167625 x^{10} + 124930000 x^{8} + 299711875 x^{6} + 306318750 x^{4} + 63065625 x^{2} + 3003125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22369715839969441233253447712000000000000000=2^{20}\cdot 5^{15}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(620=2^{2}\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{620}(1,·)$, $\chi_{620}(387,·)$, $\chi_{620}(263,·)$, $\chi_{620}(587,·)$, $\chi_{620}(463,·)$, $\chi_{620}(529,·)$, $\chi_{620}(147,·)$, $\chi_{620}(469,·)$, $\chi_{620}(23,·)$, $\chi_{620}(281,·)$, $\chi_{620}(27,·)$, $\chi_{620}(349,·)$, $\chi_{620}(523,·)$, $\chi_{620}(481,·)$, $\chi_{620}(101,·)$, $\chi_{620}(109,·)$, $\chi_{620}(221,·)$, $\chi_{620}(247,·)$, $\chi_{620}(249,·)$, $\chi_{620}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{25} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{125} a^{8} + \frac{2}{25} a^{4} + \frac{1}{5}$, $\frac{1}{125} a^{9} + \frac{2}{25} a^{5} + \frac{1}{5} a$, $\frac{1}{19375} a^{10} + \frac{2}{125} a^{6} + \frac{11}{25} a^{2}$, $\frac{1}{19375} a^{11} + \frac{2}{125} a^{7} + \frac{11}{25} a^{3}$, $\frac{1}{96875} a^{12} - \frac{2}{625} a^{8} - \frac{12}{125} a^{4} + \frac{11}{25}$, $\frac{1}{96875} a^{13} - \frac{2}{625} a^{9} - \frac{12}{125} a^{5} + \frac{11}{25} a$, $\frac{1}{96875} a^{14} + \frac{2}{125} a^{6} + \frac{8}{25} a^{2}$, $\frac{1}{96875} a^{15} + \frac{2}{125} a^{7} + \frac{8}{25} a^{3}$, $\frac{1}{147734375} a^{16} + \frac{27}{5909375} a^{14} + \frac{89}{29546875} a^{12} - \frac{11}{1181875} a^{10} - \frac{9}{190625} a^{8} + \frac{47}{7625} a^{6} + \frac{3209}{38125} a^{4} - \frac{33}{305} a^{2} - \frac{984}{7625}$, $\frac{1}{147734375} a^{17} + \frac{27}{5909375} a^{15} + \frac{89}{29546875} a^{13} - \frac{11}{1181875} a^{11} - \frac{9}{190625} a^{9} + \frac{47}{7625} a^{7} + \frac{3209}{38125} a^{5} - \frac{33}{305} a^{3} - \frac{984}{7625} a$, $\frac{1}{5107325078125} a^{18} - \frac{9053}{5107325078125} a^{16} + \frac{4235064}{1021465015625} a^{14} + \frac{3467068}{1021465015625} a^{12} - \frac{3400654}{204293003125} a^{10} - \frac{19987593}{6590096875} a^{8} + \frac{12371159}{1318019375} a^{6} - \frac{6258247}{1318019375} a^{4} - \frac{104660684}{263603875} a^{2} - \frac{39718088}{263603875}$, $\frac{1}{5107325078125} a^{19} - \frac{9053}{5107325078125} a^{17} + \frac{4235064}{1021465015625} a^{15} + \frac{3467068}{1021465015625} a^{13} - \frac{3400654}{204293003125} a^{11} - \frac{19987593}{6590096875} a^{9} + \frac{12371159}{1318019375} a^{7} - \frac{6258247}{1318019375} a^{5} - \frac{104660684}{263603875} a^{3} - \frac{39718088}{263603875} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{21050}$, which has order $1347200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24173706.832424585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1922000.2, 5.5.923521.1, 10.10.2665284492003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |