Normalized defining polynomial
\( x^{20} - 2 x^{19} - 6 x^{18} + 9 x^{17} + 6 x^{16} + 8 x^{15} + 56 x^{14} - 113 x^{13} - 146 x^{12} + 388 x^{11} + 88 x^{10} - 671 x^{9} + 101 x^{8} + 722 x^{7} + 2 x^{6} - 556 x^{5} - 167 x^{4} + 296 x^{3} + 122 x^{2} - 33 x + 7 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(222578998094306639295545344=2^{18}\cdot 170701^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 170701$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{212} a^{18} - \frac{7}{106} a^{17} - \frac{33}{212} a^{16} - \frac{45}{212} a^{15} - \frac{15}{212} a^{14} + \frac{59}{212} a^{13} - \frac{59}{212} a^{12} - \frac{49}{106} a^{11} + \frac{27}{212} a^{10} + \frac{47}{106} a^{9} + \frac{55}{212} a^{8} + \frac{55}{212} a^{7} - \frac{12}{53} a^{6} - \frac{99}{212} a^{5} - \frac{25}{106} a^{4} + \frac{57}{212} a^{3} - \frac{5}{212} a^{2} + \frac{1}{4} a + \frac{37}{212}$, $\frac{1}{15616542689029679019416} a^{19} + \frac{25686657030089269941}{15616542689029679019416} a^{18} + \frac{3201878217043279840229}{15616542689029679019416} a^{17} + \frac{1404567828836437187649}{3904135672257419754854} a^{16} + \frac{3271003790302470776369}{7808271344514839509708} a^{15} - \frac{3000761605222879066621}{7808271344514839509708} a^{14} + \frac{1892446440841799690729}{7808271344514839509708} a^{13} + \frac{2439891751437278615221}{15616542689029679019416} a^{12} - \frac{5645829617843621429103}{15616542689029679019416} a^{11} + \frac{7025790382138245317499}{15616542689029679019416} a^{10} + \frac{3099302663506889587117}{15616542689029679019416} a^{9} + \frac{1636345176028646070543}{3904135672257419754854} a^{8} + \frac{1167558720617380751649}{15616542689029679019416} a^{7} + \frac{343823251587542605105}{15616542689029679019416} a^{6} - \frac{5113822925927550269183}{15616542689029679019416} a^{5} + \frac{7241283284515195028419}{15616542689029679019416} a^{4} - \frac{819803499845517152225}{7808271344514839509708} a^{3} - \frac{3382012814120810742719}{7808271344514839509708} a^{2} + \frac{582373689749343151006}{1952067836128709877427} a - \frac{3764441646469822593345}{15616542689029679019416}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 133825.361617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n567 are not computed |
| Character table for t20n567 is not computed |
Intermediate fields
| 5.5.170701.1, 10.6.1864885209664.1, 10.2.1864885209664.2, 10.2.1864885209664.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.18.48 | $x^{12} - 4 x^{11} - 4 x^{10} + 8 x^{9} - 4 x^{8} - 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{2} + 8$ | $4$ | $3$ | $18$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 170701 | Data not computed | ||||||