Normalized defining polynomial
\( x^{20} - x^{19} + 13 x^{18} - 4 x^{17} + 138 x^{16} - 481 x^{15} + 2045 x^{14} - 4980 x^{13} + 19301 x^{12} - 36325 x^{11} + 68890 x^{10} - 104714 x^{9} + 174168 x^{8} - 44226 x^{7} + 47983 x^{6} - 14164 x^{5} + 10616 x^{4} + 445 x^{3} + 2650 x^{2} - 125 x + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22199191947851112787734405517578125=5^{15}\cdot 31^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(155=5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{155}(64,·)$, $\chi_{155}(1,·)$, $\chi_{155}(2,·)$, $\chi_{155}(4,·)$, $\chi_{155}(97,·)$, $\chi_{155}(8,·)$, $\chi_{155}(128,·)$, $\chi_{155}(66,·)$, $\chi_{155}(78,·)$, $\chi_{155}(16,·)$, $\chi_{155}(132,·)$, $\chi_{155}(94,·)$, $\chi_{155}(32,·)$, $\chi_{155}(33,·)$, $\chi_{155}(101,·)$, $\chi_{155}(39,·)$, $\chi_{155}(109,·)$, $\chi_{155}(47,·)$, $\chi_{155}(126,·)$, $\chi_{155}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{25} a^{15} + \frac{1}{25} a^{13} + \frac{1}{5} a^{12} + \frac{6}{25} a^{11} - \frac{12}{25} a^{10} + \frac{6}{25} a^{9} - \frac{7}{25} a^{8} + \frac{1}{25} a^{7} - \frac{2}{25} a^{6} - \frac{1}{5} a^{5} + \frac{3}{25} a^{4} - \frac{2}{5} a^{3} + \frac{3}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{14} - \frac{4}{25} a^{12} - \frac{12}{25} a^{11} + \frac{6}{25} a^{10} - \frac{12}{25} a^{9} + \frac{1}{25} a^{8} - \frac{7}{25} a^{7} - \frac{1}{5} a^{6} - \frac{2}{25} a^{5} - \frac{2}{5} a^{4} + \frac{3}{25} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{22506898179427525} a^{17} - \frac{294864270357121}{22506898179427525} a^{16} + \frac{10760498473873}{4501379635885505} a^{15} + \frac{909205899230709}{22506898179427525} a^{14} - \frac{210814021047053}{4501379635885505} a^{13} + \frac{10992802574110922}{22506898179427525} a^{12} + \frac{10047794312929867}{22506898179427525} a^{11} + \frac{4571424202498349}{22506898179427525} a^{10} - \frac{3247229745112748}{22506898179427525} a^{9} + \frac{504977962972054}{22506898179427525} a^{8} - \frac{1599328699750229}{22506898179427525} a^{7} + \frac{984027356852601}{4501379635885505} a^{6} - \frac{5510142347309073}{22506898179427525} a^{5} - \frac{563624833687709}{4501379635885505} a^{4} + \frac{11185173612652602}{22506898179427525} a^{3} + \frac{2942515553089197}{22506898179427525} a^{2} + \frac{2227239004620613}{4501379635885505} a + \frac{190931591142933}{900275927177101}$, $\frac{1}{22506898179427525} a^{18} + \frac{108192405962256}{22506898179427525} a^{16} + \frac{440880878229536}{22506898179427525} a^{15} + \frac{1757703920494636}{22506898179427525} a^{14} - \frac{1993203351602071}{22506898179427525} a^{13} - \frac{1670155948809464}{22506898179427525} a^{12} - \frac{9338181247683206}{22506898179427525} a^{11} + \frac{7652598014168409}{22506898179427525} a^{10} - \frac{10333008396483766}{22506898179427525} a^{9} + \frac{7408241507864408}{22506898179427525} a^{8} + \frac{4358306164450909}{22506898179427525} a^{7} + \frac{9240804825677303}{22506898179427525} a^{6} - \frac{5440226983366077}{22506898179427525} a^{5} + \frac{3634958918637348}{22506898179427525} a^{4} + \frac{429428454357341}{4501379635885505} a^{3} - \frac{1741011047262827}{22506898179427525} a^{2} - \frac{1436260478823882}{4501379635885505} a - \frac{68619080804835}{900275927177101}$, $\frac{1}{112534490897137625} a^{19} - \frac{1}{112534490897137625} a^{18} - \frac{2}{112534490897137625} a^{17} - \frac{533609215018744}{112534490897137625} a^{16} - \frac{129527128999212}{112534490897137625} a^{15} - \frac{10470790237586596}{112534490897137625} a^{14} + \frac{1342686089194689}{22506898179427525} a^{13} + \frac{7287767853137467}{22506898179427525} a^{12} - \frac{10295273957863169}{112534490897137625} a^{11} - \frac{10590228371976813}{22506898179427525} a^{10} + \frac{7906285212262434}{22506898179427525} a^{9} - \frac{11360769818760504}{112534490897137625} a^{8} - \frac{46137465089295612}{112534490897137625} a^{7} + \frac{37255316770823674}{112534490897137625} a^{6} + \frac{18526128933876088}{112534490897137625} a^{5} - \frac{46604583299806189}{112534490897137625} a^{4} + \frac{19873428633567271}{112534490897137625} a^{3} + \frac{9575852624661988}{22506898179427525} a^{2} - \frac{357946020788601}{4501379635885505} a - \frac{268705462053374}{900275927177101}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{10}$, which has order $400$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34279214135504}{112534490897137625} a^{19} - \frac{33746819736904}{112534490897137625} a^{18} + \frac{438708656579752}{112534490897137625} a^{17} - \frac{134987278947616}{112534490897137625} a^{16} + \frac{4657061123692752}{112534490897137625} a^{15} - \frac{16532430736329149}{112534490897137625} a^{14} + \frac{13802449272393736}{22506898179427525} a^{13} - \frac{33611832457956384}{22506898179427525} a^{12} + \frac{651347367741984104}{112534490897137625} a^{11} - \frac{49034129077721512}{4501379635885505} a^{10} + \frac{454859818816663842}{22506898179427525} a^{9} - \frac{3533764481930165456}{112534490897137625} a^{8} + \frac{5877616099937095872}{112534490897137625} a^{7} - \frac{1492486849684316304}{112534490897137625} a^{6} + \frac{1619273651435864632}{112534490897137625} a^{5} - \frac{2003540773400225681}{112534490897137625} a^{4} + \frac{358256238326972864}{112534490897137625} a^{3} + \frac{3003466956584456}{22506898179427525} a^{2} + \frac{3577162892111824}{4501379635885505} a - \frac{33746819736904}{900275927177101} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24173706.8324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.923521.1, 10.10.2665284492003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |