Normalized defining polynomial
\( x^{20} - 4 x^{19} + 14 x^{18} - 20 x^{17} + 63 x^{16} - 16 x^{15} + 220 x^{14} + 264 x^{13} + 1741 x^{12} + 1036 x^{11} + 6254 x^{10} + 11660 x^{9} + 22413 x^{8} + 29992 x^{7} + 50816 x^{6} + 74528 x^{5} + 80510 x^{4} + 81312 x^{3} + 52056 x^{2} + 25888 x + 11576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(220894941712131239715817914368=2^{55}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{12} - \frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{32} a^{9} - \frac{7}{32} a^{8} + \frac{3}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{512} a^{18} + \frac{1}{256} a^{17} - \frac{7}{512} a^{16} - \frac{13}{256} a^{14} + \frac{5}{128} a^{13} + \frac{23}{256} a^{12} + \frac{1}{64} a^{11} - \frac{113}{512} a^{10} - \frac{17}{256} a^{9} + \frac{51}{512} a^{8} - \frac{3}{16} a^{7} + \frac{125}{256} a^{6} + \frac{41}{128} a^{5} + \frac{79}{256} a^{4} + \frac{3}{32} a^{3} + \frac{3}{8} a^{2} - \frac{9}{32} a + \frac{7}{64}$, $\frac{1}{536993991139729532717295984901742107648} a^{19} + \frac{442477154075948006598368232629968259}{536993991139729532717295984901742107648} a^{18} + \frac{1125438254465417671007844123693633851}{536993991139729532717295984901742107648} a^{17} + \frac{1843511052448579530806173993953891071}{76713427305675647531042283557391729664} a^{16} - \frac{685539669477607737364479698424703531}{38356713652837823765521141778695864832} a^{15} + \frac{16256921798670527279871528273806927165}{268496995569864766358647992450871053824} a^{14} - \frac{27459120544920255698969490216655664159}{268496995569864766358647992450871053824} a^{13} + \frac{1060672963621161300303602267597329499}{268496995569864766358647992450871053824} a^{12} + \frac{50275889784483573233346816331349817751}{536993991139729532717295984901742107648} a^{11} + \frac{62686982180467133570177525541969334381}{536993991139729532717295984901742107648} a^{10} - \frac{34384794360293713330380143050497845167}{536993991139729532717295984901742107648} a^{9} - \frac{62501354496382484446527576049299814317}{536993991139729532717295984901742107648} a^{8} + \frac{8617041906481665075711381421382186413}{268496995569864766358647992450871053824} a^{7} + \frac{30571387162579904662097399362544841423}{268496995569864766358647992450871053824} a^{6} + \frac{39343097273003070403303236935152583713}{268496995569864766358647992450871053824} a^{5} - \frac{23920213420646743544480359284238572825}{268496995569864766358647992450871053824} a^{4} + \frac{15681727433369651778096388055665315863}{33562124446233095794830999056358881728} a^{3} + \frac{7094717749927338197124415887493541731}{33562124446233095794830999056358881728} a^{2} - \frac{17446959755949960159243341988159857003}{67124248892466191589661998112717763456} a + \frac{1233564548714001300800708320863063111}{67124248892466191589661998112717763456}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20791866.5937 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.739328.2, 5.1.739328.1 x5, 10.2.4372847132672.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.739328.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $19$ | 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |