Properties

Label 20.0.219...184.1
Degree $20$
Signature $[0, 10]$
Discriminant $2.199\times 10^{21}$
Root discriminant \(11.67\)
Ramified primes $2,7,23,431$
Class number $1$
Class group trivial
Galois group $C_2^9.C_2^5.S_5$ (as 20T994)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1)
 
gp: K = bnfinit(y^20 - 5*y^19 + 11*y^18 - 11*y^17 - 2*y^16 + 16*y^15 - 2*y^14 - 24*y^13 + 22*y^12 + 8*y^11 - 22*y^10 - 13*y^9 + 14*y^8 + 3*y^7 + y^6 + 15*y^5 + 20*y^4 + 9*y^3 + 3*y^2 + 2*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1)
 

\( x^{20} - 5 x^{19} + 11 x^{18} - 11 x^{17} - 2 x^{16} + 16 x^{15} - 2 x^{14} - 24 x^{13} + 22 x^{12} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2199140361717170013184\) \(\medspace = 2^{10}\cdot 7^{6}\cdot 23^{2}\cdot 431^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{15/8}7^{3/4}23^{1/2}431^{1/2}\approx 1571.6553852184147$
Ramified primes:   \(2\), \(7\), \(23\), \(431\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{567947447479}a^{19}-\frac{188290224203}{567947447479}a^{18}-\frac{174225288284}{567947447479}a^{17}+\frac{12253238385}{567947447479}a^{16}+\frac{18966534861}{567947447479}a^{15}-\frac{138182773363}{567947447479}a^{14}-\frac{257287552850}{567947447479}a^{13}-\frac{2825698004}{567947447479}a^{12}+\frac{214722052102}{567947447479}a^{11}+\frac{50164800310}{567947447479}a^{10}-\frac{152349283644}{567947447479}a^{9}+\frac{176256545782}{567947447479}a^{8}-\frac{30458889122}{567947447479}a^{7}-\frac{67544896520}{567947447479}a^{6}-\frac{129936515290}{567947447479}a^{5}+\frac{41891468240}{567947447479}a^{4}+\frac{13141853506}{567947447479}a^{3}-\frac{245090998797}{567947447479}a^{2}-\frac{238123711600}{567947447479}a-\frac{249453842442}{567947447479}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{68936272252}{567947447479}a^{19}-\frac{587143183448}{567947447479}a^{18}+\frac{2117265143094}{567947447479}a^{17}-\frac{4183267805908}{567947447479}a^{16}+\frac{4254724686062}{567947447479}a^{15}-\frac{231585731999}{567947447479}a^{14}-\frac{4207437433960}{567947447479}a^{13}+\frac{1419984163961}{567947447479}a^{12}+\frac{6742805600484}{567947447479}a^{11}-\frac{8950229774136}{567947447479}a^{10}+\frac{1365047554024}{567947447479}a^{9}+\frac{4662797225093}{567947447479}a^{8}+\frac{19788497056}{567947447479}a^{7}-\frac{3563299676417}{567947447479}a^{6}+\frac{1726772640216}{567947447479}a^{5}-\frac{163034697879}{567947447479}a^{4}-\frac{1236450365418}{567947447479}a^{3}-\frac{1891679423009}{567947447479}a^{2}+\frac{309646581486}{567947447479}a+\frac{43368248979}{567947447479}$, $\frac{293504572591}{567947447479}a^{19}-\frac{1704812644334}{567947447479}a^{18}+\frac{4336290135033}{567947447479}a^{17}-\frac{5222424524662}{567947447479}a^{16}-\frac{150813449678}{567947447479}a^{15}+\frac{9617111611187}{567947447479}a^{14}-\frac{9701653029943}{567947447479}a^{13}-\frac{3889288738888}{567947447479}a^{12}+\frac{13336426188188}{567947447479}a^{11}-\frac{3530194849954}{567947447479}a^{10}-\frac{12507855940696}{567947447479}a^{9}+\frac{8178727076943}{567947447479}a^{8}+\frac{3620815707770}{567947447479}a^{7}-\frac{2374922844801}{567947447479}a^{6}-\frac{1590117886975}{567947447479}a^{5}+\frac{5919555989051}{567947447479}a^{4}+\frac{955832415281}{567947447479}a^{3}-\frac{1307518715679}{567947447479}a^{2}-\frac{394787649623}{567947447479}a+\frac{662156881518}{567947447479}$, $\frac{158365982752}{567947447479}a^{19}-\frac{1241622898876}{567947447479}a^{18}+\frac{4404719589920}{567947447479}a^{17}-\frac{9150120090384}{567947447479}a^{16}+\frac{11425280313166}{567947447479}a^{15}-\frac{6963727576851}{567947447479}a^{14}-\frac{312340286963}{567947447479}a^{13}+\frac{72714588246}{567947447479}a^{12}+\frac{7776098937862}{567947447479}a^{11}-\frac{12314697346966}{567947447479}a^{10}+\frac{7479283188305}{567947447479}a^{9}-\frac{2417325969156}{567947447479}a^{8}+\frac{4757696478615}{567947447479}a^{7}-\frac{4288327603196}{567947447479}a^{6}+\frac{3202302708368}{567947447479}a^{5}-\frac{1622823035296}{567947447479}a^{4}-\frac{1285804128322}{567947447479}a^{3}-\frac{2578126148794}{567947447479}a^{2}-\frac{508076004183}{567947447479}a-\frac{766903201165}{567947447479}$, $\frac{487660646241}{567947447479}a^{19}-\frac{2714458694554}{567947447479}a^{18}+\frac{6978391276066}{567947447479}a^{17}-\frac{9653562081508}{567947447479}a^{16}+\frac{5073129967862}{567947447479}a^{15}+\frac{4736952588582}{567947447479}a^{14}-\frac{4654172184820}{567947447479}a^{13}-\frac{7441782258858}{567947447479}a^{12}+\frac{15021861727732}{567947447479}a^{11}-\frac{6062759994278}{567947447479}a^{10}-\frac{7340362063133}{567947447479}a^{9}-\frac{160275627541}{567947447479}a^{8}+\frac{5521871973688}{567947447479}a^{7}-\frac{3626069384330}{567947447479}a^{6}+\frac{2430687681321}{567947447479}a^{5}+\frac{7966630250872}{567947447479}a^{4}+\frac{5302683238336}{567947447479}a^{3}+\frac{2638416515570}{567947447479}a^{2}+\frac{2051714839778}{567947447479}a+\frac{1070828353584}{567947447479}$, $a$, $\frac{105511272117}{567947447479}a^{19}-\frac{700060620917}{567947447479}a^{18}+\frac{2274242579151}{567947447479}a^{17}-\frac{4491201545370}{567947447479}a^{16}+\frac{5441443801948}{567947447479}a^{15}-\frac{3237609605119}{567947447479}a^{14}-\frac{243491085354}{567947447479}a^{13}+\frac{932030175769}{567947447479}a^{12}+\frac{2430514278548}{567947447479}a^{11}-\frac{5314227200785}{567947447479}a^{10}+\frac{3757355697435}{567947447479}a^{9}-\frac{1547783971598}{567947447479}a^{8}+\frac{682809465574}{567947447479}a^{7}-\frac{1289296337021}{567947447479}a^{6}+\frac{799137447853}{567947447479}a^{5}+\frac{1099272455264}{567947447479}a^{4}+\frac{988252572478}{567947447479}a^{3}+\frac{308046095328}{567947447479}a^{2}+\frac{381188507360}{567947447479}a+\frac{362654778810}{567947447479}$, $\frac{860131700202}{567947447479}a^{19}-\frac{4907115925957}{567947447479}a^{18}+\frac{12763738213433}{567947447479}a^{17}-\frac{17486434325192}{567947447479}a^{16}+\frac{7846858718881}{567947447479}a^{15}+\frac{12540269639065}{567947447479}a^{14}-\frac{13584944156328}{567947447479}a^{13}-\frac{12393337854399}{567947447479}a^{12}+\frac{30670497307325}{567947447479}a^{11}-\frac{13062329544587}{567947447479}a^{10}-\frac{16589309780021}{567947447479}a^{9}+\frac{5552387716280}{567947447479}a^{8}+\frac{9599621250822}{567947447479}a^{7}-\frac{5765487235215}{567947447479}a^{6}+\frac{3197111621079}{567947447479}a^{5}+\frac{12421469077706}{567947447479}a^{4}+\frac{7416722368587}{567947447479}a^{3}+\frac{894351039685}{567947447479}a^{2}+\frac{1173428128661}{567947447479}a+\frac{1250239218663}{567947447479}$, $\frac{28088777574}{567947447479}a^{19}-\frac{24382680215}{567947447479}a^{18}-\frac{427679203109}{567947447479}a^{17}+\frac{1825023181737}{567947447479}a^{16}-\frac{3509679186242}{567947447479}a^{15}+\frac{3199964570629}{567947447479}a^{14}+\frac{269403529900}{567947447479}a^{13}-\frac{2516812877846}{567947447479}a^{12}-\frac{281460870403}{567947447479}a^{11}+\frac{4138457426655}{567947447479}a^{10}-\frac{3536555395580}{567947447479}a^{9}-\frac{619734376528}{567947447479}a^{8}+\frac{19741141103}{567947447479}a^{7}+\frac{1961339118396}{567947447479}a^{6}-\frac{50384003732}{567947447479}a^{5}+\frac{478416946721}{567947447479}a^{4}+\frac{1346041852158}{567947447479}a^{3}+\frac{326474834375}{567947447479}a^{2}-\frac{1064497393267}{567947447479}a-\frac{182976152001}{567947447479}$, $\frac{269456357483}{567947447479}a^{19}-\frac{2063267299240}{567947447479}a^{18}+\frac{7127506917069}{567947447479}a^{17}-\frac{14089457937422}{567947447479}a^{16}+\frac{15569482286613}{567947447479}a^{15}-\frac{5091856461196}{567947447479}a^{14}-\frac{7939312548219}{567947447479}a^{13}+\frac{3928029004312}{567947447479}a^{12}+\frac{14567038421767}{567947447479}a^{11}-\frac{21781042462054}{567947447479}a^{10}+\frac{6887744750984}{567947447479}a^{9}+\frac{5342023633679}{567947447479}a^{8}+\frac{2748555486474}{567947447479}a^{7}-\frac{7867297966506}{567947447479}a^{6}+\frac{4111815515067}{567947447479}a^{5}+\frac{1315291911838}{567947447479}a^{4}-\frac{3816330034824}{567947447479}a^{3}-\frac{3085772263482}{567947447479}a^{2}+\frac{535158346358}{567947447479}a-\frac{396857135885}{567947447479}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 166.624941197 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 166.624941197 \cdot 1}{2\cdot\sqrt{2199140361717170013184}}\cr\approx \mathstrut & 0.170365723673 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 5*x^19 + 11*x^18 - 11*x^17 - 2*x^16 + 16*x^15 - 2*x^14 - 24*x^13 + 22*x^12 + 8*x^11 - 22*x^10 - 13*x^9 + 14*x^8 + 3*x^7 + x^6 + 15*x^5 + 20*x^4 + 9*x^3 + 3*x^2 + 2*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^9.C_2^5.S_5$ (as 20T994):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1966080
The 280 conjugacy class representatives for $C_2^9.C_2^5.S_5$
Character table for $C_2^9.C_2^5.S_5$

Intermediate fields

5.1.3017.1, 10.0.209352647.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.2.97909553495581830152192.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.8.0.1}{8} }$ ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{3}$ R ${\href{/padicField/11.10.0.1}{10} }^{2}$ ${\href{/padicField/13.5.0.1}{5} }^{4}$ ${\href{/padicField/17.10.0.1}{10} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ R ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.3$x^{10} + 10 x^{9} + 74 x^{8} + 320 x^{7} + 1104 x^{6} + 2752 x^{5} + 6176 x^{4} + 12096 x^{3} + 17712 x^{2} + 15968 x + 8416$$2$$5$$10$$C_2^4 : C_5$$[2, 2, 2, 2]^{5}$
\(7\) Copy content Toggle raw display 7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
7.8.6.2$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2660 x^{4} + 3408 x^{3} + 3312 x^{2} + 5184 x + 6304$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
\(23\) Copy content Toggle raw display 23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
\(431\) Copy content Toggle raw display $\Q_{431}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{431}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$2$$2$$2$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$