Normalized defining polynomial
\( x^{20} - 5 x^{19} + 11 x^{18} - 15 x^{17} + 22 x^{16} - 47 x^{15} + 85 x^{14} - 115 x^{13} + 174 x^{12} - 321 x^{11} + 497 x^{10} - 625 x^{9} + 748 x^{8} - 825 x^{7} + 715 x^{6} - 469 x^{5} + 254 x^{4} - 119 x^{3} + 43 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(218830721135617121255424=2^{16}\cdot 3^{15}\cdot 7^{5}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{22417709162965} a^{19} + \frac{1636585132639}{22417709162965} a^{18} - \frac{140728590857}{4483541832593} a^{17} + \frac{4103617986066}{22417709162965} a^{16} + \frac{1545415248084}{22417709162965} a^{15} - \frac{4489200483089}{22417709162965} a^{14} - \frac{3390288994153}{22417709162965} a^{13} - \frac{1476421396543}{4483541832593} a^{12} + \frac{10685217777326}{22417709162965} a^{11} + \frac{6077077860759}{22417709162965} a^{10} - \frac{4941807318201}{22417709162965} a^{9} + \frac{1514669724816}{22417709162965} a^{8} - \frac{3156432626476}{22417709162965} a^{7} + \frac{840176376693}{4483541832593} a^{6} - \frac{1344841959331}{22417709162965} a^{5} - \frac{7986229111371}{22417709162965} a^{4} - \frac{5704444972587}{22417709162965} a^{3} + \frac{8564675747304}{22417709162965} a^{2} + \frac{8651091954061}{22417709162965} a - \frac{9919584255397}{22417709162965}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{57422048}{83100881} a^{19} - \frac{1312374107}{415504405} a^{18} + \frac{2630525921}{415504405} a^{17} - \frac{3301735622}{415504405} a^{16} + \frac{5097881172}{415504405} a^{15} - \frac{11535096047}{415504405} a^{14} + \frac{19900323817}{415504405} a^{13} - \frac{25498305273}{415504405} a^{12} + \frac{40499899656}{415504405} a^{11} - \frac{76609420649}{415504405} a^{10} + \frac{22661147457}{83100881} a^{9} - \frac{137109358323}{415504405} a^{8} + \frac{164169296934}{415504405} a^{7} - \frac{176297850441}{415504405} a^{6} + \frac{141686160017}{415504405} a^{5} - \frac{85788978232}{415504405} a^{4} + \frac{44698897896}{415504405} a^{3} - \frac{19897700873}{415504405} a^{2} + \frac{6569872123}{415504405} a - \frac{738992428}{415504405} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5970.91953124 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5000 |
| The 230 conjugacy class representatives for t20n299 are not computed |
| Character table for t20n299 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.189.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.5.4.3 | $x^{5} - 244$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |