Normalized defining polynomial
\( x^{20} - 4 x^{19} + 15 x^{18} - 34 x^{17} + 80 x^{16} - 146 x^{15} + 258 x^{14} - 369 x^{13} + 496 x^{12} - 547 x^{11} + 571 x^{10} - 427 x^{9} + 465 x^{8} - 216 x^{7} + 200 x^{6} - 41 x^{5} + 58 x^{4} - 5 x^{3} + 10 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2186365218234941887328764881=3^{10}\cdot 1483^{2}\cdot 129751961^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1483, 129751961$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{21846140761656067} a^{19} + \frac{6396475296551841}{21846140761656067} a^{18} + \frac{5756924221204748}{21846140761656067} a^{17} + \frac{8836129689108227}{21846140761656067} a^{16} + \frac{7991570044550675}{21846140761656067} a^{15} - \frac{2845744487615082}{21846140761656067} a^{14} + \frac{6825371631016091}{21846140761656067} a^{13} - \frac{2985108977632982}{21846140761656067} a^{12} - \frac{7942656265500918}{21846140761656067} a^{11} - \frac{8225173701390150}{21846140761656067} a^{10} + \frac{9935733163163954}{21846140761656067} a^{9} + \frac{7613793304802984}{21846140761656067} a^{8} + \frac{7022371768991133}{21846140761656067} a^{7} + \frac{8229495676851394}{21846140761656067} a^{6} - \frac{3051114769321261}{21846140761656067} a^{5} - \frac{5553223210360596}{21846140761656067} a^{4} + \frac{1088513024704683}{21846140761656067} a^{3} - \frac{8645550356210408}{21846140761656067} a^{2} + \frac{2953632597863099}{21846140761656067} a + \frac{3300439422227443}{21846140761656067}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5721412821848745}{21846140761656067} a^{19} - \frac{25393623093033495}{21846140761656067} a^{18} + \frac{94729798118001009}{21846140761656067} a^{17} - \frac{227360959046271943}{21846140761656067} a^{16} + \frac{525269398347439700}{21846140761656067} a^{15} - \frac{994799518034214901}{21846140761656067} a^{14} + \frac{1747711591383955892}{21846140761656067} a^{13} - \frac{2583493760443542936}{21846140761656067} a^{12} + \frac{3459283672189962487}{21846140761656067} a^{11} - \frac{3937515771798912192}{21846140761656067} a^{10} + \frac{4066803286216729302}{21846140761656067} a^{9} - \frac{3251825415619390177}{21846140761656067} a^{8} + \frac{3107005929357761800}{21846140761656067} a^{7} - \frac{1951400815693389506}{21846140761656067} a^{6} + \frac{1231902654220950053}{21846140761656067} a^{5} - \frac{504901316536654208}{21846140761656067} a^{4} + \frac{282455009594543940}{21846140761656067} a^{3} - \frac{166288748869849943}{21846140761656067} a^{2} + \frac{36584548568516604}{21846140761656067} a - \frac{2031486049070975}{21846140761656067} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 244847.728749 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.8.192422158163.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 1483 | Data not computed | ||||||
| 129751961 | Data not computed | ||||||