Normalized defining polynomial
\( x^{20} - 10 x^{19} + 60 x^{18} - 255 x^{17} + 833 x^{16} - 2176 x^{15} + 4622 x^{14} - 8044 x^{13} + 11428 x^{12} - 13058 x^{11} + 11680 x^{10} - 7762 x^{9} + 3457 x^{8} - 830 x^{7} + 1310 x^{6} - 3773 x^{5} + 4070 x^{4} - 1854 x^{3} - 876 x^{2} + 1177 x + 1381 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21852734616490167965351477248=2^{16}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{13} - \frac{1}{27} a^{12} + \frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{2}{27} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{7}{27} a^{5} - \frac{13}{27} a^{4} + \frac{2}{27} a^{3} - \frac{13}{27} a^{2} - \frac{2}{27} a - \frac{2}{27}$, $\frac{1}{2241} a^{15} + \frac{34}{2241} a^{14} - \frac{26}{747} a^{13} - \frac{64}{2241} a^{12} + \frac{103}{2241} a^{11} - \frac{1}{249} a^{10} - \frac{311}{2241} a^{9} + \frac{46}{747} a^{8} - \frac{70}{747} a^{7} - \frac{41}{2241} a^{6} + \frac{1111}{2241} a^{5} + \frac{2}{747} a^{4} - \frac{235}{747} a^{3} + \frac{56}{2241} a^{2} + \frac{11}{747} a - \frac{364}{2241}$, $\frac{1}{2241} a^{16} + \frac{11}{2241} a^{14} + \frac{98}{2241} a^{13} + \frac{38}{2241} a^{12} - \frac{25}{2241} a^{11} - \frac{5}{2241} a^{10} + \frac{5}{2241} a^{9} + \frac{26}{747} a^{8} - \frac{122}{2241} a^{7} - \frac{26}{249} a^{6} + \frac{827}{2241} a^{5} - \frac{6}{83} a^{4} - \frac{874}{2241} a^{3} - \frac{377}{2241} a^{2} + \frac{506}{2241} a - \frac{74}{2241}$, $\frac{1}{2241} a^{17} - \frac{1}{83} a^{14} - \frac{100}{2241} a^{13} - \frac{68}{2241} a^{12} + \frac{107}{2241} a^{11} + \frac{104}{2241} a^{10} + \frac{13}{2241} a^{9} - \frac{146}{2241} a^{8} + \frac{37}{249} a^{7} - \frac{8}{83} a^{6} - \frac{431}{2241} a^{5} - \frac{691}{2241} a^{4} - \frac{839}{2241} a^{3} + \frac{139}{2241} a^{2} - \frac{935}{2241} a - \frac{229}{2241}$, $\frac{1}{32178519} a^{18} - \frac{1}{3575391} a^{17} + \frac{5093}{32178519} a^{16} + \frac{2537}{32178519} a^{15} - \frac{522899}{32178519} a^{14} + \frac{59464}{3575391} a^{13} - \frac{279433}{32178519} a^{12} + \frac{1449715}{32178519} a^{11} + \frac{1235293}{32178519} a^{10} - \frac{3731899}{32178519} a^{9} - \frac{1517072}{10726173} a^{8} + \frac{1040900}{32178519} a^{7} - \frac{1254736}{10726173} a^{6} + \frac{10884442}{32178519} a^{5} + \frac{13442399}{32178519} a^{4} - \frac{100087}{3575391} a^{3} - \frac{7760971}{32178519} a^{2} + \frac{6398963}{32178519} a - \frac{15297601}{32178519}$, $\frac{1}{2670817077} a^{19} + \frac{32}{2670817077} a^{18} + \frac{263186}{2670817077} a^{17} + \frac{354940}{2670817077} a^{16} + \frac{26848}{296757453} a^{15} + \frac{872820}{98919151} a^{14} - \frac{2753791}{890272359} a^{13} - \frac{6000877}{2670817077} a^{12} - \frac{109423106}{2670817077} a^{11} - \frac{81842039}{2670817077} a^{10} - \frac{2440286}{890272359} a^{9} + \frac{329555810}{2670817077} a^{8} - \frac{285098143}{2670817077} a^{7} - \frac{256381621}{2670817077} a^{6} - \frac{891908149}{2670817077} a^{5} + \frac{53583079}{296757453} a^{4} - \frac{417318239}{890272359} a^{3} + \frac{258782735}{2670817077} a^{2} + \frac{136572878}{890272359} a + \frac{305602076}{2670817077}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1702148.10944 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 5.1.810448.1 x5, 10.2.24302560546048.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.810448.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |