Normalized defining polynomial
\( x^{20} + 18 x^{18} + 145 x^{16} + 702 x^{14} + 2334 x^{12} + 5694 x^{10} + 10087 x^{8} + 11883 x^{6} + 8014 x^{4} + 2328 x^{2} + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21822182114965484993955979209=3^{10}\cdot 883^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{2} a^{9} - \frac{2}{9} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{9} a^{3} + \frac{1}{6} a$, $\frac{1}{18} a^{12} + \frac{5}{18} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{7}{18} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{13} + \frac{5}{18} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{7}{18} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{5}{18} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{18} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{18} a^{3} + \frac{1}{6} a$, $\frac{1}{18} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{18} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{18} a^{17} - \frac{1}{2} a^{9} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{18} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{3799242} a^{18} - \frac{55369}{3799242} a^{16} + \frac{101447}{3799242} a^{14} + \frac{1309}{211069} a^{12} + \frac{112268}{1899621} a^{10} - \frac{1}{2} a^{9} + \frac{110003}{633207} a^{8} - \frac{1}{2} a^{7} + \frac{53055}{211069} a^{6} - \frac{1}{2} a^{5} + \frac{41611}{1899621} a^{4} + \frac{197056}{633207} a^{2} - \frac{1}{2} a + \frac{82925}{211069}$, $\frac{1}{3799242} a^{19} - \frac{55369}{3799242} a^{17} + \frac{101447}{3799242} a^{15} + \frac{1309}{211069} a^{13} + \frac{4489}{1266414} a^{11} - \frac{413201}{1266414} a^{9} + \frac{899633}{1899621} a^{7} - \frac{1}{2} a^{6} - \frac{1816399}{3799242} a^{5} - \frac{295147}{3799242} a^{3} - \frac{1}{2} a^{2} + \frac{286481}{1266414} a - \frac{1}{2}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 774197.192254 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.7017201.1, 10.4.147723329623203.1, 10.4.147723329623203.2, 10.2.49241109874401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 883 | Data not computed | ||||||