Normalized defining polynomial
\( x^{20} - 2 x^{19} + 11 x^{18} - 4 x^{17} + 63 x^{16} - 56 x^{15} + 99 x^{14} - 89 x^{13} + 96 x^{12} - 153 x^{11} + 77 x^{10} - 153 x^{9} + 96 x^{8} - 89 x^{7} + 99 x^{6} - 56 x^{5} + 63 x^{4} - 4 x^{3} + 11 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21822182114965484993955979209=3^{10}\cdot 883^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{3} a^{9} + \frac{4}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{4}{9} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{10} - \frac{4}{9} a^{8} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{4}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{1899621} a^{18} - \frac{55387}{1899621} a^{17} - \frac{67841}{1899621} a^{16} - \frac{21170}{1899621} a^{15} + \frac{80059}{1899621} a^{14} + \frac{30317}{633207} a^{13} - \frac{3149}{211069} a^{12} + \frac{66161}{1899621} a^{11} + \frac{70361}{1899621} a^{10} + \frac{126262}{633207} a^{9} - \frac{117259}{633207} a^{8} + \frac{66161}{1899621} a^{7} - \frac{3149}{211069} a^{6} + \frac{302020}{1899621} a^{5} + \frac{80059}{1899621} a^{4} + \frac{189899}{1899621} a^{3} - \frac{304039}{633207} a^{2} + \frac{262963}{633207} a + \frac{844277}{1899621}$, $\frac{1}{66486735} a^{19} - \frac{1}{22162245} a^{18} + \frac{98372}{9498105} a^{17} + \frac{533569}{22162245} a^{16} + \frac{197514}{7387415} a^{15} + \frac{3529228}{66486735} a^{14} - \frac{197683}{22162245} a^{13} - \frac{392464}{13297347} a^{12} - \frac{3203759}{66486735} a^{11} + \frac{402613}{9498105} a^{10} - \frac{4164922}{9498105} a^{9} + \frac{22557221}{66486735} a^{8} + \frac{563708}{13297347} a^{7} - \frac{25366189}{66486735} a^{6} - \frac{8041459}{22162245} a^{5} - \frac{5122678}{22162245} a^{4} - \frac{3858068}{66486735} a^{3} - \frac{440827}{1055345} a^{2} + \frac{177858}{7387415} a + \frac{10079417}{22162245}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5488102}{22162245} a^{19} + \frac{8971576}{22162245} a^{18} - \frac{2642753}{1055345} a^{17} - \frac{1659859}{22162245} a^{16} - \frac{328633552}{22162245} a^{15} + \frac{59857178}{7387415} a^{14} - \frac{378133517}{22162245} a^{13} + \frac{16878762}{1477483} a^{12} - \frac{92001314}{7387415} a^{11} + \frac{85305434}{3166035} a^{10} - \frac{2480397}{1055345} a^{9} + \frac{198778266}{7387415} a^{8} - \frac{37343095}{4432449} a^{7} + \frac{67214586}{7387415} a^{6} - \frac{101010417}{7387415} a^{5} + \frac{60868708}{22162245} a^{4} - \frac{184511129}{22162245} a^{3} - \frac{6813843}{1055345} a^{2} - \frac{9634208}{7387415} a + \frac{3943313}{22162245} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2114484.68113 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.7017201.1, 10.0.147723329623203.1, 10.4.147723329623203.1, 10.6.49241109874401.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 883 | Data not computed | ||||||