Normalized defining polynomial
\( x^{20} - 3 x^{19} + 9 x^{18} + 6 x^{17} - 14 x^{16} + 39 x^{15} + 56 x^{14} - 57 x^{13} + 124 x^{12} + 201 x^{11} - 181 x^{10} + 402 x^{9} + 496 x^{8} - 456 x^{7} + 896 x^{6} + 1248 x^{5} - 896 x^{4} + 768 x^{3} + 2304 x^{2} - 1536 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21822182114965484993955979209=3^{10}\cdot 883^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a$, $\frac{1}{36} a^{12} - \frac{1}{12} a^{11} + \frac{5}{36} a^{10} - \frac{1}{6} a^{9} + \frac{1}{18} a^{8} + \frac{1}{12} a^{7} - \frac{4}{9} a^{6} - \frac{1}{4} a^{5} + \frac{2}{9} a^{4} + \frac{1}{4} a^{3} - \frac{1}{36} a^{2} + \frac{1}{6} a + \frac{1}{9}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{12} - \frac{1}{72} a^{11} + \frac{1}{18} a^{10} + \frac{1}{36} a^{9} - \frac{5}{72} a^{8} - \frac{5}{36} a^{7} - \frac{5}{72} a^{6} + \frac{1}{36} a^{5} + \frac{13}{72} a^{4} - \frac{19}{72} a^{3} + \frac{1}{18} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{432} a^{14} - \frac{1}{144} a^{13} - \frac{1}{144} a^{12} - \frac{5}{72} a^{11} + \frac{23}{216} a^{10} + \frac{13}{144} a^{9} + \frac{1}{27} a^{8} - \frac{5}{48} a^{7} + \frac{1}{108} a^{6} + \frac{71}{144} a^{5} + \frac{163}{432} a^{4} - \frac{7}{72} a^{3} + \frac{11}{36} a^{2} + \frac{5}{18} a - \frac{8}{27}$, $\frac{1}{864} a^{15} - \frac{1}{864} a^{14} + \frac{1}{288} a^{13} - \frac{13}{432} a^{11} - \frac{13}{864} a^{10} + \frac{59}{432} a^{9} - \frac{121}{864} a^{8} - \frac{175}{432} a^{7} + \frac{257}{864} a^{6} - \frac{395}{864} a^{5} - \frac{23}{108} a^{4} - \frac{1}{24} a^{3} - \frac{1}{18} a^{2} + \frac{5}{27} a - \frac{8}{27}$, $\frac{1}{1728} a^{16} - \frac{1}{1728} a^{15} - \frac{1}{1728} a^{14} - \frac{1}{144} a^{13} + \frac{5}{864} a^{12} + \frac{131}{1728} a^{11} - \frac{3}{32} a^{10} - \frac{37}{1728} a^{9} + \frac{47}{288} a^{8} - \frac{187}{1728} a^{7} + \frac{191}{576} a^{6} - \frac{199}{432} a^{5} - \frac{53}{216} a^{4} - \frac{1}{6} a^{3} + \frac{25}{108} a^{2} + \frac{19}{54} a + \frac{5}{27}$, $\frac{1}{3456} a^{17} - \frac{1}{3456} a^{16} - \frac{1}{3456} a^{15} - \frac{1}{864} a^{14} - \frac{7}{1728} a^{13} + \frac{11}{3456} a^{12} - \frac{19}{576} a^{11} + \frac{427}{3456} a^{10} - \frac{31}{192} a^{9} - \frac{251}{3456} a^{8} + \frac{551}{1152} a^{7} + \frac{337}{864} a^{6} + \frac{13}{108} a^{5} + \frac{31}{432} a^{4} + \frac{29}{108} a^{3} - \frac{35}{108} a^{2} - \frac{8}{27} a - \frac{11}{27}$, $\frac{1}{20736} a^{18} - \frac{1}{6912} a^{17} + \frac{5}{20736} a^{16} - \frac{1}{3456} a^{15} - \frac{5}{10368} a^{14} - \frac{35}{6912} a^{13} + \frac{1}{108} a^{12} + \frac{233}{6912} a^{11} - \frac{659}{5184} a^{10} - \frac{977}{6912} a^{9} + \frac{2995}{20736} a^{8} + \frac{127}{1152} a^{7} + \frac{265}{1728} a^{6} - \frac{5}{96} a^{5} + \frac{299}{1296} a^{4} + \frac{5}{36} a^{3} - \frac{91}{324} a^{2} + \frac{7}{54} a - \frac{11}{81}$, $\frac{1}{290304} a^{19} + \frac{1}{290304} a^{18} + \frac{41}{290304} a^{17} - \frac{41}{145152} a^{16} - \frac{17}{145152} a^{15} - \frac{97}{290304} a^{14} + \frac{13}{2688} a^{13} + \frac{313}{96768} a^{12} - \frac{797}{18144} a^{11} - \frac{4019}{290304} a^{10} + \frac{12919}{290304} a^{9} + \frac{9701}{145152} a^{8} - \frac{8077}{24192} a^{7} - \frac{1807}{4032} a^{6} + \frac{5645}{18144} a^{5} - \frac{1255}{4536} a^{4} - \frac{2185}{4536} a^{3} + \frac{277}{2268} a^{2} - \frac{95}{1134} a + \frac{38}{567}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1051}{32256} a^{19} + \frac{815}{3584} a^{18} - \frac{12557}{32256} a^{17} + \frac{2831}{8064} a^{16} + \frac{47771}{16128} a^{15} + \frac{2327}{3584} a^{14} + \frac{3595}{5376} a^{13} + \frac{393707}{32256} a^{12} + \frac{88507}{16128} a^{11} + \frac{58829}{32256} a^{10} + \frac{1153421}{32256} a^{9} + \frac{100013}{8064} a^{8} + \frac{24499}{2688} a^{7} + \frac{399079}{4032} a^{6} + \frac{84193}{2016} a^{5} + \frac{38}{21} a^{4} + \frac{92107}{504} a^{3} + \frac{7909}{63} a^{2} - \frac{4877}{63} a + \frac{2029}{21} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2605089.85061 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.7017201.1, 10.0.147723329623203.1, 10.8.147723329623203.1, 10.2.49241109874401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 883 | Data not computed | ||||||