Normalized defining polynomial
\( x^{20} + 180 x^{18} - 20 x^{17} + 15050 x^{16} - 1164 x^{15} + 742950 x^{14} - 14840 x^{13} + 23099640 x^{12} + 44700 x^{11} + 473353370 x^{10} + 53209300 x^{9} + 7311226245 x^{8} + 3549040740 x^{7} + 97155742500 x^{6} + 76326522868 x^{5} + 859441629410 x^{4} + 600850423640 x^{3} + 4500543123300 x^{2} + 1447969302080 x + 10617607463057 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21757888750734540800000000000000000000000000000000=2^{55}\cdot 5^{32}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $293.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4400=2^{4}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4400}(1,·)$, $\chi_{4400}(901,·)$, $\chi_{4400}(3521,·)$, $\chi_{4400}(3081,·)$, $\chi_{4400}(3981,·)$, $\chi_{4400}(461,·)$, $\chi_{4400}(2641,·)$, $\chi_{4400}(3541,·)$, $\chi_{4400}(441,·)$, $\chi_{4400}(2201,·)$, $\chi_{4400}(3101,·)$, $\chi_{4400}(1761,·)$, $\chi_{4400}(2661,·)$, $\chi_{4400}(1321,·)$, $\chi_{4400}(2221,·)$, $\chi_{4400}(881,·)$, $\chi_{4400}(1781,·)$, $\chi_{4400}(3961,·)$, $\chi_{4400}(1341,·)$, $\chi_{4400}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{77} a^{10} + \frac{2}{77} a^{8} + \frac{1}{77} a^{7} + \frac{3}{11} a^{6} + \frac{3}{11} a^{5} + \frac{34}{77} a^{4} - \frac{2}{11} a^{3} + \frac{3}{7} a^{2} + \frac{13}{77} a - \frac{3}{11}$, $\frac{1}{77} a^{11} + \frac{2}{77} a^{9} + \frac{1}{77} a^{8} - \frac{1}{77} a^{7} + \frac{3}{11} a^{6} + \frac{34}{77} a^{5} - \frac{2}{11} a^{4} + \frac{3}{7} a^{3} + \frac{13}{77} a^{2} + \frac{1}{77} a$, $\frac{1}{77} a^{12} + \frac{1}{77} a^{9} - \frac{5}{77} a^{8} - \frac{3}{77} a^{7} - \frac{8}{77} a^{6} + \frac{3}{11} a^{5} - \frac{5}{11} a^{4} - \frac{36}{77} a^{3} + \frac{12}{77} a^{2} - \frac{4}{77} a - \frac{5}{11}$, $\frac{1}{77} a^{13} - \frac{5}{77} a^{9} - \frac{5}{77} a^{8} + \frac{2}{77} a^{7} + \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{26}{77} a^{3} - \frac{37}{77} a^{2} + \frac{18}{77} a + \frac{3}{11}$, $\frac{1}{539} a^{14} + \frac{4}{77} a^{9} + \frac{12}{539} a^{8} - \frac{4}{77} a^{7} + \frac{1}{11} a^{6} - \frac{4}{11} a^{5} + \frac{4}{11} a^{4} + \frac{24}{77} a^{3} + \frac{183}{539} a^{2} - \frac{38}{77} a + \frac{1}{11}$, $\frac{1}{539} a^{15} + \frac{12}{539} a^{9} - \frac{1}{77} a^{8} + \frac{3}{77} a^{7} - \frac{5}{11} a^{6} + \frac{3}{11} a^{5} - \frac{5}{11} a^{4} + \frac{36}{539} a^{3} - \frac{27}{77} a^{2} + \frac{32}{77} a + \frac{1}{11}$, $\frac{1}{539} a^{16} - \frac{2}{539} a^{10} - \frac{1}{77} a^{9} - \frac{1}{77} a^{8} - \frac{4}{77} a^{7} - \frac{3}{11} a^{6} + \frac{9}{49} a^{4} + \frac{1}{77} a^{3} - \frac{34}{77} a^{2} + \frac{25}{77} a - \frac{5}{11}$, $\frac{1}{539} a^{17} - \frac{2}{539} a^{11} - \frac{1}{77} a^{9} - \frac{2}{77} a^{8} + \frac{2}{77} a^{7} + \frac{3}{11} a^{6} + \frac{246}{539} a^{5} + \frac{5}{11} a^{4} + \frac{29}{77} a^{3} - \frac{19}{77} a^{2} + \frac{3}{7} a - \frac{3}{11}$, $\frac{1}{10769277642965454172676547665773} a^{18} - \frac{802257252674994060450394989}{1538468234709350596096649666539} a^{17} - \frac{67951456015827065457425747}{139860748609940963281513606049} a^{16} + \frac{641636548291596827032274919}{10769277642965454172676547665773} a^{15} + \frac{178454194972752355604621799}{1538468234709350596096649666539} a^{14} - \frac{782780649968502077426072538}{1538468234709350596096649666539} a^{13} + \frac{11373692530245964911505397449}{10769277642965454172676547665773} a^{12} + \frac{129101198904585166403062398}{219781176387050085156664238077} a^{11} + \frac{4400468321766043844238043}{855179674657782432516203261} a^{10} - \frac{64640327408821641215016863547}{979025240269586742970595242343} a^{9} - \frac{19929889545813391580346506885}{1538468234709350596096649666539} a^{8} + \frac{1161119427833154945471376226}{139860748609940963281513606049} a^{7} + \frac{2732746564504600194038307614187}{10769277642965454172676547665773} a^{6} - \frac{761172360433998024813271060053}{1538468234709350596096649666539} a^{5} + \frac{663521995792417882575477738558}{1538468234709350596096649666539} a^{4} - \frac{169134972668538673225391395270}{979025240269586742970595242343} a^{3} - \frac{301450874693544169070145100758}{1538468234709350596096649666539} a^{2} - \frac{44449099818940033586229091849}{219781176387050085156664238077} a - \frac{4203988111808068290002459032}{31397310912435726450952034011}$, $\frac{1}{17260763616895484902023264298055053571922911460568345825646610811} a^{19} + \frac{424399125816166265960119954940137}{17260763616895484902023264298055053571922911460568345825646610811} a^{18} - \frac{645564626282924227517842707604980611205596158844943560506383}{2465823373842212128860466328293579081703273065795477975092372973} a^{17} - \frac{4263229023811857575305954382682021984470456704430488393079047}{17260763616895484902023264298055053571922911460568345825646610811} a^{16} + \frac{967003984866081857327960909712248253133881531402994357031396}{1569160328808680445638478572550459415629355587324395075058782801} a^{15} - \frac{1062347739102387352566680760897144734781992657739960333964807}{2465823373842212128860466328293579081703273065795477975092372973} a^{14} - \frac{57696084683947487502548193318810148163325569603699553453695175}{17260763616895484902023264298055053571922911460568345825646610811} a^{13} - \frac{89273631338741177571359462820734982835341643394777037247965348}{17260763616895484902023264298055053571922911460568345825646610811} a^{12} + \frac{289309276078562488932345785397224652529195066368924340715220}{50322925996779839364499312822317940442923940118275060716170877} a^{11} + \frac{20321548361950182862911965185128203837577985649898742970646552}{17260763616895484902023264298055053571922911460568345825646610811} a^{10} - \frac{3945536255871237142972005098096834069193019176959847445964043}{114309692827122416569690492040099692529290804374624806792361661} a^{9} - \frac{53305842157086423530157080971355364077041936744002969284734352}{2465823373842212128860466328293579081703273065795477975092372973} a^{8} - \frac{765433095471824341513172388734741789236701176774851196464261532}{17260763616895484902023264298055053571922911460568345825646610811} a^{7} - \frac{2044778896111870425745289996731153800117412748698590007298572513}{17260763616895484902023264298055053571922911460568345825646610811} a^{6} + \frac{853208702696659225379263591891423196281798317909134527200522215}{2465823373842212128860466328293579081703273065795477975092372973} a^{5} - \frac{7701946702945091951109066905496829381977789122852071772646749694}{17260763616895484902023264298055053571922911460568345825646610811} a^{4} + \frac{1058810179221008472930890989141371815128047777787228238149850142}{17260763616895484902023264298055053571922911460568345825646610811} a^{3} - \frac{112860075978689454474626863084526627845542690958536511529851412}{2465823373842212128860466328293579081703273065795477975092372973} a^{2} - \frac{29897056309509449696480094028818862855329314657011363652794592}{352260481977458875551495189756225583100467580827925425013196139} a - \frac{6462051919296837384507272299309556033394991863828729484510158}{50322925996779839364499312822317940442923940118275060716170877}$
Class group and class number
$C_{6557121050}$, which has order $6557121050$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.247808.2, 5.5.390625.1, 10.10.5000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||