Normalized defining polynomial
\( x^{20} - 31 x^{18} - 12 x^{17} + 453 x^{16} + 156 x^{15} - 3762 x^{14} + 216 x^{13} + 19293 x^{12} - 20064 x^{11} - 51423 x^{10} + 122754 x^{9} + 139785 x^{8} - 363852 x^{7} - 398664 x^{6} + 319290 x^{5} + 557193 x^{4} + 229440 x^{3} + 689231 x^{2} + 951210 x + 452761 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21363681729976837664400000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{12} + \frac{1}{18} a^{8} + \frac{4}{9} a^{6} - \frac{1}{2} a^{4} + \frac{7}{18} a^{2} + \frac{1}{9}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{9} + \frac{4}{9} a^{7} - \frac{1}{2} a^{5} + \frac{7}{18} a^{3} + \frac{1}{9} a$, $\frac{1}{180} a^{16} + \frac{1}{45} a^{15} + \frac{1}{45} a^{14} + \frac{7}{90} a^{13} + \frac{1}{18} a^{12} - \frac{1}{30} a^{11} - \frac{7}{90} a^{10} + \frac{11}{90} a^{9} + \frac{1}{180} a^{8} + \frac{19}{90} a^{7} - \frac{4}{9} a^{6} - \frac{1}{15} a^{5} - \frac{8}{45} a^{4} + \frac{16}{45} a^{3} - \frac{7}{90} a^{2} + \frac{37}{90} a + \frac{61}{180}$, $\frac{1}{180} a^{17} - \frac{1}{90} a^{15} - \frac{1}{90} a^{14} + \frac{1}{45} a^{13} + \frac{7}{90} a^{12} + \frac{1}{18} a^{11} - \frac{1}{15} a^{10} + \frac{13}{180} a^{9} + \frac{1}{45} a^{8} + \frac{22}{45} a^{7} + \frac{19}{90} a^{6} + \frac{4}{45} a^{5} - \frac{13}{30} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{13}{36} a - \frac{17}{90}$, $\frac{1}{180} a^{18} - \frac{1}{45} a^{15} + \frac{1}{90} a^{14} - \frac{2}{45} a^{13} + \frac{1}{18} a^{12} + \frac{1}{30} a^{11} - \frac{1}{12} a^{10} + \frac{2}{45} a^{9} + \frac{1}{9} a^{8} + \frac{16}{45} a^{7} + \frac{19}{45} a^{6} - \frac{7}{30} a^{5} + \frac{1}{30} a^{4} + \frac{17}{45} a^{3} + \frac{77}{180} a^{2} - \frac{14}{45} a + \frac{1}{15}$, $\frac{1}{229114094078754013199906577154443200577095456340} a^{19} + \frac{198728261194832979850818437947316523586490257}{114557047039377006599953288577221600288547728170} a^{18} - \frac{5172469372979306860589292427467952026864635}{11455704703937700659995328857722160028854772817} a^{17} + \frac{50177422255026539501979041580907420233995743}{57278523519688503299976644288610800144273864085} a^{16} - \frac{199729698693384389926054410360040331725386964}{11455704703937700659995328857722160028854772817} a^{15} + \frac{65236580538556509591880305213835797100402439}{38185682346459002199984429525740533429515909390} a^{14} - \frac{2341313023288536620583305274341090796332051093}{38185682346459002199984429525740533429515909390} a^{13} - \frac{1927281465416071071726652038387216966790098797}{114557047039377006599953288577221600288547728170} a^{12} - \frac{5151875650507330310630185406327093768391539917}{229114094078754013199906577154443200577095456340} a^{11} + \frac{1355617173975270113110278534470088834106678607}{114557047039377006599953288577221600288547728170} a^{10} + \frac{7395136693443408485195029433466133513815892036}{57278523519688503299976644288610800144273864085} a^{9} - \frac{7735725652606178496290822778610026971074108}{1272856078215300073332814317524684447650530313} a^{8} + \frac{1716412371237636859427470171039312422822165589}{7637136469291800439996885905148106685903181878} a^{7} - \frac{40591298329671992700618931645262538858458568449}{114557047039377006599953288577221600288547728170} a^{6} + \frac{43994501228822297786216240598199172338468258153}{114557047039377006599953288577221600288547728170} a^{5} - \frac{1298049075946048230923779195275579896131134292}{11455704703937700659995328857722160028854772817} a^{4} - \frac{44113312232950166651500787802417385119413755727}{229114094078754013199906577154443200577095456340} a^{3} - \frac{5965625380355943283361370741328560577800840421}{19092841173229501099992214762870266714757954695} a^{2} + \frac{23034977196843204327048156055574015134193512733}{57278523519688503299976644288610800144273864085} a - \frac{249499539897598711697013072200720822744541586}{6364280391076500366664071587623422238252651565}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 756002700.5372794 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{-15})\), 5.1.162000.1, 10.0.393660000000.1, 10.0.146163202380000000.1, 10.2.9744213492000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |