Properties

Label 20.0.21333423461...0000.3
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{35}\cdot 31^{18}$
Root discriminant $735.28$
Ramified primes $2, 5, 31$
Class number $19581781000$ (GRH)
Class group $[2, 10, 979089050]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1976877420853005, 0, 2763074514531375, 0, 711319770305875, 0, 72806825933425, 0, 3808990097300, 0, 114636279655, 0, 2101010275, 0, 23832800, 0, 163370, 0, 620, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 620*x^18 + 163370*x^16 + 23832800*x^14 + 2101010275*x^12 + 114636279655*x^10 + 3808990097300*x^8 + 72806825933425*x^6 + 711319770305875*x^4 + 2763074514531375*x^2 + 1976877420853005)
 
gp: K = bnfinit(x^20 + 620*x^18 + 163370*x^16 + 23832800*x^14 + 2101010275*x^12 + 114636279655*x^10 + 3808990097300*x^8 + 72806825933425*x^6 + 711319770305875*x^4 + 2763074514531375*x^2 + 1976877420853005, 1)
 

Normalized defining polynomial

\( x^{20} + 620 x^{18} + 163370 x^{16} + 23832800 x^{14} + 2101010275 x^{12} + 114636279655 x^{10} + 3808990097300 x^{8} + 72806825933425 x^{6} + 711319770305875 x^{4} + 2763074514531375 x^{2} + 1976877420853005 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2133342346188491938901276370239257812500000000000000000000=2^{20}\cdot 5^{35}\cdot 31^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $735.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3100=2^{2}\cdot 5^{2}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{3100}(1,·)$, $\chi_{3100}(2627,·)$, $\chi_{3100}(841,·)$, $\chi_{3100}(2447,·)$, $\chi_{3100}(529,·)$, $\chi_{3100}(23,·)$, $\chi_{3100}(2867,·)$, $\chi_{3100}(1887,·)$, $\chi_{3100}(481,·)$, $\chi_{3100}(1763,·)$, $\chi_{3100}(1521,·)$, $\chi_{3100}(1961,·)$, $\chi_{3100}(1703,·)$, $\chi_{3100}(1709,·)$, $\chi_{3100}(743,·)$, $\chi_{3100}(1969,·)$, $\chi_{3100}(883,·)$, $\chi_{3100}(1589,·)$, $\chi_{3100}(249,·)$, $\chi_{3100}(2107,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{33} a^{5} - \frac{10}{33} a^{3} - \frac{13}{33} a$, $\frac{1}{33} a^{6} - \frac{10}{33} a^{4} - \frac{13}{33} a^{2}$, $\frac{1}{33} a^{7} - \frac{14}{33} a^{3} + \frac{2}{33} a$, $\frac{1}{33} a^{8} - \frac{14}{33} a^{4} + \frac{2}{33} a^{2}$, $\frac{1}{33} a^{9} - \frac{2}{11} a^{3} + \frac{16}{33} a$, $\frac{1}{35818299} a^{10} + \frac{10}{1155429} a^{8} + \frac{1085}{1155429} a^{6} + \frac{48050}{1155429} a^{4} - \frac{410654}{1155429} a^{2} + \frac{181}{1061}$, $\frac{1}{680547681} a^{11} + \frac{315127}{21953151} a^{9} + \frac{106124}{21953151} a^{7} - \frac{162028}{21953151} a^{5} + \frac{5261452}{21953151} a^{3} - \frac{92438}{221749} a$, $\frac{1}{680547681} a^{12} - \frac{8}{680547681} a^{10} + \frac{207983}{21953151} a^{8} - \frac{86902}{21953151} a^{6} - \frac{204142}{1995741} a^{4} + \frac{73868}{7317717} a^{2} + \frac{377}{1061}$, $\frac{1}{680547681} a^{13} + \frac{68011}{21953151} a^{9} + \frac{1699}{385143} a^{7} - \frac{215551}{21953151} a^{5} - \frac{9576046}{21953151} a^{3} + \frac{33767}{665247} a$, $\frac{1}{21096978111} a^{14} - \frac{1}{75616409} a^{10} - \frac{14176}{1155429} a^{8} - \frac{10205}{7317717} a^{6} + \frac{61754722}{226849227} a^{4} + \frac{1789241}{21953151} a^{2} + \frac{291}{1061}$, $\frac{1}{696200277663} a^{15} + \frac{5}{7486024491} a^{13} - \frac{5}{7486024491} a^{11} - \frac{526970}{65859453} a^{9} + \frac{3366248}{241484661} a^{7} + \frac{79635367}{7486024491} a^{5} - \frac{293829868}{724453983} a^{3} + \frac{9154}{35013} a$, $\frac{1}{1419552366154857} a^{16} - \frac{2207}{157728040683873} a^{14} - \frac{74}{267789542757} a^{12} - \frac{2642}{219100534983} a^{10} + \frac{3860809145}{492387223779} a^{8} + \frac{228353697449}{15264003937149} a^{6} + \frac{9806627404325}{45792011811447} a^{4} + \frac{4561335154}{44762474889} a^{2} + \frac{543470}{2163379}$, $\frac{1}{44006123350800567} a^{17} + \frac{17}{1419552366154857} a^{15} - \frac{3359}{15264003937149} a^{13} + \frac{9221}{45792011811447} a^{11} - \frac{4691310347}{1477161671337} a^{9} + \frac{158131911292}{24904427476401} a^{7} + \frac{194862600941}{45792011811447} a^{5} - \frac{666347883557}{1477161671337} a^{3} - \frac{200702386}{1356438633} a$, $\frac{1}{44006123350800567} a^{18} + \frac{8428}{473184122051619} a^{14} + \frac{22478}{45792011811447} a^{12} + \frac{191516}{15264003937149} a^{10} + \frac{5160410238611}{473184122051619} a^{8} - \frac{1592283854}{4162910164677} a^{6} - \frac{3931575747152}{15264003937149} a^{4} - \frac{7906236466}{44762474889} a^{2} + \frac{419753}{2163379}$, $\frac{1}{44006123350800567} a^{19} + \frac{272}{473184122051619} a^{15} - \frac{67}{378446378607} a^{13} - \frac{50}{5088001312383} a^{11} + \frac{5847948311173}{473184122051619} a^{9} - \frac{53105834770}{45792011811447} a^{7} + \frac{1881901102}{803368628271} a^{5} + \frac{150465975494}{492387223779} a^{3} - \frac{417855142}{1356438633} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{10}\times C_{979089050}$, which has order $19581781000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 212853377248.3273 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.1922000.2, 5.5.360750390625.2, 10.10.650704221680450439453125.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R $20$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{20}$ $20$ $20$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ $20$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ R $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$31$31.10.9.2$x^{10} - 1519$$10$$1$$9$$C_{10}$$[\ ]_{10}$
31.10.9.2$x^{10} - 1519$$10$$1$$9$$C_{10}$$[\ ]_{10}$