Normalized defining polynomial
\( x^{20} + 620 x^{18} + 163370 x^{16} + 23832800 x^{14} + 2101010275 x^{12} + 114566349855 x^{10} + 3787311859300 x^{8} + 70454737110425 x^{6} + 607155836715875 x^{4} + 1148533543886375 x^{2} + 203649683820005 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2133342346188491938901276370239257812500000000000000000000=2^{20}\cdot 5^{35}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $735.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3100=2^{2}\cdot 5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3100}(1,·)$, $\chi_{3100}(1089,·)$, $\chi_{3100}(729,·)$, $\chi_{3100}(523,·)$, $\chi_{3100}(1083,·)$, $\chi_{3100}(1721,·)$, $\chi_{3100}(281,·)$, $\chi_{3100}(27,·)$, $\chi_{3100}(2247,·)$, $\chi_{3100}(1503,·)$, $\chi_{3100}(2209,·)$, $\chi_{3100}(3067,·)$, $\chi_{3100}(743,·)$, $\chi_{3100}(1769,·)$, $\chi_{3100}(1387,·)$, $\chi_{3100}(1263,·)$, $\chi_{3100}(1461,·)$, $\chi_{3100}(249,·)$, $\chi_{3100}(2107,·)$, $\chi_{3100}(1341,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{18221149} a^{10} + \frac{10}{587779} a^{8} + \frac{1085}{587779} a^{6} + \frac{48050}{587779} a^{4} + \frac{156996}{587779} a^{2} - \frac{79316}{587779}$, $\frac{1}{18221149} a^{11} + \frac{10}{587779} a^{9} + \frac{1085}{587779} a^{7} + \frac{48050}{587779} a^{5} + \frac{156996}{587779} a^{3} - \frac{79316}{587779} a$, $\frac{1}{18221149} a^{12} - \frac{2015}{587779} a^{8} - \frac{288300}{587779} a^{6} - \frac{44029}{587779} a^{4} + \frac{37581}{587779} a^{2} - \frac{98758}{587779}$, $\frac{1}{18221149} a^{13} - \frac{2015}{587779} a^{9} - \frac{288300}{587779} a^{7} - \frac{44029}{587779} a^{5} + \frac{37581}{587779} a^{3} - \frac{98758}{587779} a$, $\frac{1}{564855619} a^{14} + \frac{10850}{587779} a^{8} - \frac{33537}{587779} a^{6} - \frac{5596533}{18221149} a^{4} - \frac{260560}{587779} a^{2} + \frac{54148}{587779}$, $\frac{1}{3751206165779} a^{15} + \frac{15}{121006650509} a^{13} + \frac{90}{3903440339} a^{11} + \frac{8525}{3903440339} a^{9} + \frac{432450}{3903440339} a^{7} - \frac{22218006972}{121006650509} a^{5} + \frac{493573221}{3903440339} a^{3} + \frac{11804959}{3903440339} a$, $\frac{1}{340763319305530139} a^{16} + \frac{9902196}{340763319305530139} a^{14} + \frac{138627024}{10992365138888069} a^{12} + \frac{107968013}{10992365138888069} a^{10} - \frac{170816580330}{354592423835099} a^{8} + \frac{4062094437039768}{10992365138888069} a^{6} - \frac{2784078425110046}{10992365138888069} a^{4} - \frac{126410924110609}{354592423835099} a^{2} - \frac{9540451979}{53394432139}$, $\frac{1}{10563662898471434309} a^{17} + \frac{17}{340763319305530139} a^{15} - \frac{214384642}{10992365138888069} a^{13} - \frac{128708398}{10992365138888069} a^{11} + \frac{430698101400}{354592423835099} a^{9} - \frac{89864249454661483}{340763319305530139} a^{7} - \frac{4690419519538512}{10992365138888069} a^{5} + \frac{120956370737120}{354592423835099} a^{3} + \frac{80951776848423}{354592423835099} a$, $\frac{1}{10563662898471434309} a^{18} - \frac{178235343}{340763319305530139} a^{14} - \frac{72267482}{10992365138888069} a^{12} - \frac{68580270}{10992365138888069} a^{10} - \frac{150845827794320273}{340763319305530139} a^{8} - \frac{1616514925643910}{10992365138888069} a^{6} - \frac{462439356270875}{10992365138888069} a^{4} + \frac{1313253022847}{354592423835099} a^{2} - \frac{26293765207}{53394432139}$, $\frac{1}{10563662898471434309} a^{19} - \frac{171}{10992365138888069} a^{15} + \frac{188082824}{10992365138888069} a^{13} + \frac{94570166}{10992365138888069} a^{11} - \frac{149490028242995603}{340763319305530139} a^{9} - \frac{5372849163231319}{10992365138888069} a^{7} - \frac{122532956655360}{354592423835099} a^{5} - \frac{90887712871911}{354592423835099} a^{3} + \frac{108258668196704}{354592423835099} a$
Class group and class number
$C_{2}\times C_{10}\times C_{394770050}$, which has order $7895401000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35952457733.9904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1922000.2, 5.5.360750390625.1, 10.10.650704221680450439453125.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{20}$ | R | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $31$ | 31.10.9.5 | $x^{10} - 178708831$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.5 | $x^{10} - 178708831$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |