Normalized defining polynomial
\( x^{20} + 620 x^{18} + 163370 x^{16} + 23832800 x^{14} + 2101010275 x^{12} + 114603766080 x^{10} + 3798910889050 x^{8} + 71713231838300 x^{6} + 662889174664625 x^{4} + 2012400282092000 x^{2} + 26243954842880 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2133342346188491938901276370239257812500000000000000000000=2^{20}\cdot 5^{35}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $735.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3100=2^{2}\cdot 5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3100}(1,·)$, $\chi_{3100}(387,·)$, $\chi_{3100}(2389,·)$, $\chi_{3100}(263,·)$, $\chi_{3100}(2761,·)$, $\chi_{3100}(2323,·)$, $\chi_{3100}(2581,·)$, $\chi_{3100}(2329,·)$, $\chi_{3100}(1883,·)$, $\chi_{3100}(221,·)$, $\chi_{3100}(1827,·)$, $\chi_{3100}(2341,·)$, $\chi_{3100}(743,·)$, $\chi_{3100}(647,·)$, $\chi_{3100}(109,·)$, $\chi_{3100}(2107,·)$, $\chi_{3100}(969,·)$, $\chi_{3100}(249,·)$, $\chi_{3100}(3003,·)$, $\chi_{3100}(767,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{4} - \frac{3}{8} a^{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{38709824} a^{10} + \frac{5}{624352} a^{8} + \frac{1085}{1248704} a^{6} + \frac{24025}{624352} a^{4} - \frac{503929}{1248704} a^{2} - \frac{29201}{78044}$, $\frac{1}{38709824} a^{11} + \frac{5}{624352} a^{9} + \frac{1085}{1248704} a^{7} + \frac{24025}{624352} a^{5} - \frac{503929}{1248704} a^{3} - \frac{29201}{78044} a$, $\frac{1}{38709824} a^{12} - \frac{2015}{1248704} a^{8} + \frac{5969}{312176} a^{6} + \frac{521547}{1248704} a^{4} - \frac{12525}{624352} a^{2} - \frac{397}{39022}$, $\frac{1}{38709824} a^{13} - \frac{2015}{1248704} a^{9} + \frac{5969}{312176} a^{7} - \frac{102805}{1248704} a^{5} + \frac{299651}{624352} a^{3} + \frac{9557}{19511} a$, $\frac{1}{1200004544} a^{14} + \frac{5425}{624352} a^{8} + \frac{401}{39022} a^{6} + \frac{234164}{604841} a^{4} - \frac{387151}{1248704} a^{2} + \frac{5161}{78044}$, $\frac{1}{715202708224} a^{15} + \frac{15}{23071055104} a^{13} - \frac{95}{11535527552} a^{11} - \frac{21275}{744227584} a^{9} - \frac{1400425}{372113792} a^{7} - \frac{978738065}{23071055104} a^{5} + \frac{68916913}{744227584} a^{3} + \frac{17716305}{46514224} a$, $\frac{1}{20913957593886208} a^{16} - \frac{964459}{20913957593886208} a^{14} + \frac{1961043}{337321896675584} a^{12} - \frac{2482689}{674643793351168} a^{10} - \frac{9196922015}{10881351505664} a^{8} - \frac{39754422986613}{674643793351168} a^{6} + \frac{291085258705019}{674643793351168} a^{4} + \frac{1314556079837}{2720337876416} a^{2} - \frac{401827453}{1141081324}$, $\frac{1}{648332685410472448} a^{17} + \frac{17}{20913957593886208} a^{15} + \frac{1834965}{168660948337792} a^{13} - \frac{4870115}{674643793351168} a^{11} - \frac{3709596825}{5440675752832} a^{9} - \frac{473555757204145}{20913957593886208} a^{7} - \frac{30021187820097}{674643793351168} a^{5} - \frac{2460152957209}{10881351505664} a^{3} + \frac{265374756075}{680084469104} a$, $\frac{1}{648332685410472448} a^{18} - \frac{63785}{20913957593886208} a^{14} - \frac{1832649}{674643793351168} a^{12} + \frac{670125}{674643793351168} a^{10} - \frac{1046290434061411}{20913957593886208} a^{8} - \frac{9102666666085}{168660948337792} a^{6} - \frac{278273413612745}{674643793351168} a^{4} + \frac{55877875605}{1360168938208} a^{2} - \frac{130038196}{285270331}$, $\frac{1}{648332685410472448} a^{19} - \frac{171}{674643793351168} a^{15} - \frac{30819}{21762703011328} a^{13} + \frac{6986397}{674643793351168} a^{11} - \frac{7028984363859}{140362131502592} a^{9} - \frac{10225605083605}{168660948337792} a^{7} + \frac{895748033709}{21762703011328} a^{5} + \frac{1755835682927}{5440675752832} a^{3} + \frac{820196829}{1899677288} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{19401050}$, which has order $6208336000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 127725981510.55186 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1922000.2, 5.5.360750390625.4, 10.10.650704221680450439453125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{20}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 5 | Data not computed | ||||||
| $31$ | 31.10.9.4 | $x^{10} - 3647119$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.4 | $x^{10} - 3647119$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |