Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} - 2 x^{17} + 170 x^{16} + 545 x^{15} + 379 x^{14} + 69 x^{13} + 7629 x^{12} + 23760 x^{11} + 2312 x^{10} - 113524 x^{9} - 155820 x^{8} + 270476 x^{7} + 1530472 x^{6} + 4025380 x^{5} + 8730182 x^{4} + 12840750 x^{3} + 13160320 x^{2} + 12555242 x + 11688877 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2113735921053303828889591550033841=3^{10}\cdot 11^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{17} - \frac{5}{17} a^{16} + \frac{8}{17} a^{15} + \frac{1}{17} a^{14} - \frac{7}{17} a^{13} - \frac{6}{17} a^{12} + \frac{2}{17} a^{11} - \frac{1}{17} a^{10} - \frac{2}{17} a^{9} - \frac{7}{17} a^{8} - \frac{1}{17} a^{7} - \frac{4}{17} a^{6} - \frac{5}{17} a^{5} + \frac{8}{17} a^{4} + \frac{2}{17} a^{3} - \frac{4}{17} a^{2} + \frac{2}{17} a$, $\frac{1}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{19} + \frac{25945541840197825493560422728560735502231064233574637622837235972893}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{18} - \frac{1353821782193476929511915875677394369215047583474775313459235380622224}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{17} - \frac{1515962478538228548610298021389047153934771781175900020235017430411628}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{16} + \frac{1303794091551578173607581320719470309932155161960176120756149288293822}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{15} + \frac{1225919850694886205479606975820404366018936155451089861024877683257544}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{14} - \frac{221290640243566218414807029765934322892576701288825274942869060894488}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{13} + \frac{961958653593717564595749974812609733618224221361087920241995572384740}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{12} + \frac{1624735902652143073110566796713538491587754439568326149474519135872423}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{11} + \frac{90228537358081628359043597650556375089076308313160413475083894353097}{198821814336006263284998839439673076385498270499707741198979751020841} a^{10} + \frac{193961282772894105679823296232308894602839803492502767538982548580278}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{9} - \frac{541808117391552509373917272073571977678691452703185301544642863932966}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{8} + \frac{431154417506263616694087931305422170461292389057489099890909418977249}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{7} - \frac{708040673362778901700136541769173986712172360802560609266778246576475}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{6} + \frac{1422935270888541461169725632510690763179372964157243788577417815878168}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{5} + \frac{417380823403146383603636310364619011020605160855260939924021919627076}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{4} - \frac{8313124193041079030029407677814509142870531781275344976738357201983}{31008906823046848402247525417196718335352941270596620186996841902333} a^{3} - \frac{1207344255257121129482857120484890436780083104418087953654344568340870}{3379970843712106475844980270474442298553470598495031600382655767354297} a^{2} - \frac{928553718416737822571244510168901320088296470972297782083860196968337}{3379970843712106475844980270474442298553470598495031600382655767354297} a - \frac{88552980131369503106146421828036481268602451436070646213641486961050}{198821814336006263284998839439673076385498270499707741198979751020841}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 122053287.89335619 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.679041.1, 10.0.36252565459.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.9.10 | $x^{10} + 24057$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||