Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 160 x^{17} + 370 x^{16} - 664 x^{15} + 930 x^{14} - 960 x^{13} + 605 x^{12} - 40 x^{11} - 270 x^{10} + 160 x^{9} + 5 x^{8} + 40 x^{7} - 15 x^{6} - 82 x^{5} + 35 x^{4} - 30 x^{3} + 30 x^{2} + 10 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211250000000000000000000000=2^{22}\cdot 5^{25}\cdot 13^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6198313388500875118451} a^{19} - \frac{2369994515387737805241}{6198313388500875118451} a^{18} - \frac{24468708840871700253}{6198313388500875118451} a^{17} + \frac{1090123887545899500792}{6198313388500875118451} a^{16} - \frac{2476111539336502795899}{6198313388500875118451} a^{15} + \frac{2077880641451604188579}{6198313388500875118451} a^{14} + \frac{470725780068541637654}{6198313388500875118451} a^{13} + \frac{73331851490335435516}{476793337576990393727} a^{12} + \frac{325239367348328829884}{6198313388500875118451} a^{11} + \frac{1102022362807346886020}{6198313388500875118451} a^{10} + \frac{2630953342961734382326}{6198313388500875118451} a^{9} + \frac{1247107437589018552940}{6198313388500875118451} a^{8} - \frac{216648371081684762117}{6198313388500875118451} a^{7} - \frac{2457918399144832720496}{6198313388500875118451} a^{6} - \frac{2478476713229349330298}{6198313388500875118451} a^{5} - \frac{2224184105303443477234}{6198313388500875118451} a^{4} - \frac{1232167117523659334149}{6198313388500875118451} a^{3} - \frac{5062023168215311039}{12886306420999740371} a^{2} - \frac{2832692395505459338003}{6198313388500875118451} a + \frac{2113759300122427494607}{6198313388500875118451}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6706554674420}{403693694464451} a^{19} - \frac{89383844648180}{403693694464451} a^{18} + \frac{541014939182380}{403693694464451} a^{17} - \frac{2020612896444575}{403693694464451} a^{16} + \frac{5224877463120845}{403693694464451} a^{15} - \frac{10078311200517830}{403693694464451} a^{14} + \frac{14915272752210910}{403693694464451} a^{13} - \frac{15989726397014435}{403693694464451} a^{12} + \frac{9476406897415675}{403693694464451} a^{11} + \frac{3350912431020886}{403693694464451} a^{10} - \frac{12686586064268240}{403693694464451} a^{9} + \frac{9258345661575060}{403693694464451} a^{8} + \frac{1093139212929785}{403693694464451} a^{7} - \frac{4477063184861365}{403693694464451} a^{6} + \frac{263613033683428}{403693694464451} a^{5} + \frac{62578814797535}{403693694464451} a^{4} + \frac{904346815870245}{403693694464451} a^{3} - \frac{59428567328745}{403693694464451} a^{2} + \frac{107427216452000}{403693694464451} a + \frac{159866328305353}{403693694464451} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 505062.639199 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 28 conjugacy class representatives for t20n138 |
| Character table for t20n138 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.1.250000.1, 10.0.250000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.10.13.1 | $x^{10} + 15 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_5$ | $[3/2]_{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |