Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} - 6 x^{17} - 16 x^{16} - 30 x^{15} + 338 x^{14} - 1062 x^{13} + 1939 x^{12} - 2190 x^{11} + 1354 x^{10} - 174 x^{9} + 53 x^{8} - 1311 x^{7} + 2270 x^{6} - 1533 x^{5} + 324 x^{4} + 180 x^{3} - 225 x^{2} - 375 x + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211141169056178733575976201=3^{10}\cdot 11^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{65} a^{15} + \frac{1}{65} a^{14} + \frac{28}{65} a^{13} + \frac{24}{65} a^{12} - \frac{14}{65} a^{11} + \frac{32}{65} a^{10} + \frac{1}{65} a^{9} + \frac{2}{5} a^{8} + \frac{16}{65} a^{7} - \frac{11}{65} a^{6} - \frac{1}{5} a^{5} + \frac{21}{65} a^{4} - \frac{29}{65} a^{3} + \frac{2}{5} a^{2} - \frac{6}{65} a - \frac{5}{13}$, $\frac{1}{65} a^{16} + \frac{1}{65} a^{14} - \frac{4}{65} a^{13} + \frac{14}{65} a^{12} + \frac{4}{13} a^{11} - \frac{31}{65} a^{10} - \frac{27}{65} a^{9} + \frac{16}{65} a^{8} - \frac{14}{65} a^{7} + \frac{24}{65} a^{6} - \frac{31}{65} a^{5} + \frac{28}{65} a^{4} + \frac{16}{65} a^{3} - \frac{19}{65} a^{2} + \frac{7}{65} a + \frac{5}{13}$, $\frac{1}{65} a^{17} - \frac{1}{13} a^{14} - \frac{14}{65} a^{13} - \frac{4}{65} a^{12} - \frac{17}{65} a^{11} + \frac{6}{65} a^{10} + \frac{3}{13} a^{9} + \frac{5}{13} a^{8} + \frac{8}{65} a^{7} - \frac{4}{13} a^{6} - \frac{24}{65} a^{5} - \frac{1}{13} a^{4} + \frac{2}{13} a^{3} - \frac{19}{65} a^{2} + \frac{31}{65} a + \frac{5}{13}$, $\frac{1}{392275} a^{18} + \frac{839}{392275} a^{17} - \frac{1782}{392275} a^{16} + \frac{158}{30175} a^{15} + \frac{6689}{392275} a^{14} - \frac{6217}{15691} a^{13} + \frac{93713}{392275} a^{12} + \frac{155498}{392275} a^{11} - \frac{74801}{392275} a^{10} + \frac{29428}{78455} a^{9} - \frac{5038}{23075} a^{8} + \frac{11162}{30175} a^{7} + \frac{96048}{392275} a^{6} - \frac{145326}{392275} a^{5} - \frac{441}{1207} a^{4} + \frac{143267}{392275} a^{3} + \frac{97989}{392275} a^{2} - \frac{30873}{78455} a + \frac{6293}{15691}$, $\frac{1}{2030822391196625} a^{19} + \frac{2204202719}{2030822391196625} a^{18} - \frac{10305709977237}{2030822391196625} a^{17} + \frac{194639490569}{2030822391196625} a^{16} - \frac{9029410863566}{2030822391196625} a^{15} + \frac{29495367113709}{406164478239325} a^{14} + \frac{709663116835238}{2030822391196625} a^{13} + \frac{22602314802989}{119460140658625} a^{12} - \frac{9693383880834}{70028358317125} a^{11} - \frac{43860881461573}{406164478239325} a^{10} + \frac{934732447113429}{2030822391196625} a^{9} + \frac{974587856738326}{2030822391196625} a^{8} - \frac{341078763423147}{2030822391196625} a^{7} - \frac{731361133313561}{2030822391196625} a^{6} + \frac{2868812121636}{14005671663425} a^{5} - \frac{375728181680458}{2030822391196625} a^{4} - \frac{3181841825181}{9189241589125} a^{3} - \frac{139607868435259}{406164478239325} a^{2} + \frac{26478752695666}{81232895647865} a + \frac{5558459002310}{16246579129573}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{751207494}{129425937875} a^{19} - \frac{3076385969}{129425937875} a^{18} + \frac{3729437702}{129425937875} a^{17} + \frac{2291332221}{129425937875} a^{16} - \frac{4572537549}{129425937875} a^{15} - \frac{7243808758}{25885187575} a^{14} + \frac{183182098722}{129425937875} a^{13} - \frac{437142038643}{129425937875} a^{12} + \frac{21765110694}{4462963375} a^{11} - \frac{114695511156}{25885187575} a^{10} + \frac{325572347651}{129425937875} a^{9} - \frac{187972857276}{129425937875} a^{8} + \frac{32659634029}{9955841375} a^{7} - \frac{734617868474}{129425937875} a^{6} + \frac{310158271}{68660975} a^{5} - \frac{247912552452}{129425937875} a^{4} + \frac{75303325421}{129425937875} a^{3} + \frac{213915373}{1035407503} a^{2} + \frac{1528436658}{1035407503} a - \frac{1182908286}{1035407503} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90444.1905101 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{429}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-143})\), 5.1.20449.1 x5, 10.0.59797108943.2, 10.2.14530697473149.1 x5, 10.0.101613269043.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |