Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} + 3 x^{17} + 27 x^{16} - 54 x^{15} + 168 x^{14} + 16 x^{13} + 165 x^{12} - 233 x^{11} + 1651 x^{10} - 1477 x^{9} + 2362 x^{8} - 964 x^{7} + 1188 x^{6} + 1161 x^{5} + 2680 x^{4} + 2012 x^{3} + 1952 x^{2} + 1056 x + 352 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211141169056178733575976201=3^{10}\cdot 11^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{2}{5} a^{8} + \frac{1}{10} a^{7} - \frac{3}{10} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{3}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{10} a^{3} + \frac{3}{10} a^{2} + \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{110} a^{16} + \frac{2}{55} a^{15} - \frac{3}{110} a^{14} + \frac{1}{22} a^{13} + \frac{1}{55} a^{11} - \frac{12}{55} a^{10} + \frac{5}{11} a^{9} + \frac{23}{55} a^{8} - \frac{19}{55} a^{7} + \frac{9}{110} a^{6} - \frac{27}{55} a^{5} - \frac{49}{110} a^{4} - \frac{23}{55} a^{3} + \frac{2}{11} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{1100} a^{17} + \frac{47}{1100} a^{15} + \frac{39}{1100} a^{14} + \frac{13}{1100} a^{13} + \frac{1}{550} a^{12} - \frac{52}{275} a^{11} + \frac{117}{550} a^{10} - \frac{3}{20} a^{9} - \frac{13}{1100} a^{8} - \frac{367}{1100} a^{7} + \frac{427}{1100} a^{6} - \frac{219}{550} a^{5} + \frac{207}{550} a^{4} - \frac{151}{550} a^{3} - \frac{3}{1100} a^{2} + \frac{11}{25} a + \frac{1}{25}$, $\frac{1}{24200} a^{18} - \frac{1}{2420} a^{17} + \frac{67}{24200} a^{16} + \frac{1079}{24200} a^{15} + \frac{3}{24200} a^{14} + \frac{41}{12100} a^{13} + \frac{54}{3025} a^{12} + \frac{23}{275} a^{11} + \frac{833}{4840} a^{10} + \frac{11987}{24200} a^{9} + \frac{9483}{24200} a^{8} - \frac{513}{24200} a^{7} + \frac{5051}{12100} a^{6} + \frac{423}{3025} a^{5} - \frac{389}{3025} a^{4} - \frac{8243}{24200} a^{3} + \frac{2621}{6050} a^{2} - \frac{42}{275} a - \frac{6}{55}$, $\frac{1}{26926344164122444186970000} a^{19} + \frac{29436514128983695897}{2692634416412244418697000} a^{18} - \frac{7337671037470908272257}{26926344164122444186970000} a^{17} - \frac{641534414052540275153}{1583902597889555540410000} a^{16} + \frac{149184403702328874034631}{5385268832824488837394000} a^{15} + \frac{348706285844615033092553}{13463172082061222093485000} a^{14} - \frac{7378567818823437460623}{269263441641224441869700} a^{13} - \frac{52517702268905250731074}{1682896510257652761685625} a^{12} - \frac{6205243997202313963884483}{26926344164122444186970000} a^{11} + \frac{3444561391626657828230291}{26926344164122444186970000} a^{10} + \frac{7671163559375839335771803}{26926344164122444186970000} a^{9} + \frac{223296124525014621187667}{1583902597889555540410000} a^{8} - \frac{109796354728726674878603}{2692634416412244418697000} a^{7} - \frac{13755847912007360851774}{152990591841604796516875} a^{6} + \frac{250016922396338267217483}{1346317208206122209348500} a^{5} - \frac{1908197682363738690515319}{26926344164122444186970000} a^{4} - \frac{777526838129875895853097}{6731586041030611046742500} a^{3} + \frac{948711241843653037892347}{3365793020515305523371250} a^{2} + \frac{3134950597460688616923}{305981183683209593033750} a - \frac{6124234936978835889766}{152990591841604796516875}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35832.5653902 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{33}, \sqrt{-39})\), 5.1.20449.1 x5, 10.0.59797108943.2, 10.0.1320972497559.1 x5, 10.2.1117745959473.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |