\\ Pari/GP code for working with number field 20.0.2086514456522375390625.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^20 - 4*x^19 + 9*x^18 - 14*x^17 + 19*x^16 - 29*x^15 + 45*x^14 - 60*x^13 + 64*x^12 - 62*x^11 + 65*x^10 - 52*x^9 + 42*x^8 - 47*x^7 + 35*x^6 - 24*x^5 + 22*x^4 - 11*x^3 + 4*x^2 - 3*x + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])