Normalized defining polynomial
\( x^{20} - 4 x^{19} + 9 x^{18} - 14 x^{17} + 19 x^{16} - 29 x^{15} + 45 x^{14} - 60 x^{13} + 64 x^{12} - 62 x^{11} + 65 x^{10} - 52 x^{9} + 42 x^{8} - 47 x^{7} + 35 x^{6} - 24 x^{5} + 22 x^{4} - 11 x^{3} + 4 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2086514456522375390625=3^{10}\cdot 5^{8}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{21} a^{17} + \frac{1}{7} a^{16} + \frac{3}{7} a^{15} + \frac{10}{21} a^{14} + \frac{1}{3} a^{13} - \frac{3}{7} a^{12} + \frac{5}{21} a^{11} - \frac{4}{21} a^{10} + \frac{2}{21} a^{9} - \frac{5}{21} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{3} + \frac{8}{21} a^{2} + \frac{1}{21} a - \frac{5}{21}$, $\frac{1}{105} a^{18} - \frac{1}{15} a^{16} - \frac{52}{105} a^{15} + \frac{11}{35} a^{14} - \frac{2}{7} a^{13} - \frac{38}{105} a^{12} - \frac{4}{35} a^{11} + \frac{2}{15} a^{10} - \frac{4}{105} a^{9} - \frac{2}{7} a^{8} + \frac{47}{105} a^{7} + \frac{5}{21} a^{6} - \frac{4}{105} a^{5} - \frac{26}{105} a^{4} + \frac{16}{105} a^{3} + \frac{47}{105} a^{2} - \frac{29}{105} a - \frac{34}{105}$, $\frac{1}{207795} a^{19} - \frac{338}{207795} a^{18} + \frac{14}{29685} a^{17} - \frac{7617}{69265} a^{16} + \frac{23498}{69265} a^{15} - \frac{66169}{207795} a^{14} - \frac{86078}{207795} a^{13} - \frac{1626}{69265} a^{12} - \frac{4050}{13853} a^{11} - \frac{55661}{207795} a^{10} - \frac{22391}{69265} a^{9} - \frac{89248}{207795} a^{8} - \frac{103711}{207795} a^{7} - \frac{60359}{207795} a^{6} - \frac{15964}{207795} a^{5} - \frac{14997}{69265} a^{4} - \frac{49006}{207795} a^{3} + \frac{7457}{41559} a^{2} + \frac{18691}{69265} a - \frac{70373}{207795}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{446380}{41559} a^{19} + \frac{507763}{13853} a^{18} - \frac{3138139}{41559} a^{17} + \frac{637280}{5937} a^{16} - \frac{5973073}{41559} a^{15} + \frac{1369838}{5937} a^{14} - \frac{4883015}{13853} a^{13} + \frac{18497107}{41559} a^{12} - \frac{18213646}{41559} a^{11} + \frac{5870395}{13853} a^{10} - \frac{19242005}{41559} a^{9} + \frac{12423695}{41559} a^{8} - \frac{574441}{1979} a^{7} + \frac{4774813}{13853} a^{6} - \frac{2508248}{13853} a^{5} + \frac{6669826}{41559} a^{4} - \frac{6152458}{41559} a^{3} + \frac{477231}{13853} a^{2} - \frac{1074751}{41559} a + \frac{788960}{41559} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527.926443922 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.5025.1, 10.0.681766875.1, 10.0.1691791875.1, 10.2.45678380625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 67 | Data not computed | ||||||