Normalized defining polynomial
\( x^{20} - 8 x^{19} + 24 x^{18} - 48 x^{17} + 134 x^{16} - 296 x^{15} + 584 x^{14} - 1304 x^{13} + 1717 x^{12} - 2032 x^{11} + 3016 x^{10} - 1352 x^{9} + 4276 x^{8} + 3008 x^{7} - 6232 x^{6} + 9872 x^{5} + 2300 x^{4} - 4992 x^{3} + 1872 x^{2} - 256 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20776019874734407680000000000=2^{55}\cdot 3^{10}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{4} a^{8} + \frac{1}{12} a^{6} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{4} a^{9} + \frac{1}{12} a^{7} + \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{24} a^{16} + \frac{1}{24} a^{8} - \frac{1}{4} a^{4} - \frac{1}{3}$, $\frac{1}{24} a^{17} + \frac{1}{24} a^{9} - \frac{1}{4} a^{5} - \frac{1}{3} a$, $\frac{1}{360} a^{18} + \frac{1}{90} a^{17} - \frac{1}{90} a^{16} - \frac{1}{36} a^{15} - \frac{1}{30} a^{14} - \frac{1}{36} a^{13} - \frac{1}{90} a^{12} + \frac{1}{45} a^{11} + \frac{17}{360} a^{10} - \frac{1}{60} a^{9} - \frac{11}{45} a^{8} + \frac{89}{180} a^{7} - \frac{13}{36} a^{6} - \frac{1}{18} a^{5} - \frac{1}{5} a^{4} + \frac{37}{90} a^{3} + \frac{16}{45} a^{2} + \frac{22}{45} a + \frac{17}{45}$, $\frac{1}{28873894429535141479770861362640} a^{19} - \frac{305963265530218426040690435}{1443694721476757073988543068132} a^{18} - \frac{13375673895238564613458151243}{962463147651171382659028712088} a^{17} + \frac{101157287902735711986303351863}{14436947214767570739885430681320} a^{16} + \frac{182368231125921196117675765189}{14436947214767570739885430681320} a^{15} - \frac{45702051566259064338015180959}{3609236803691892684971357670330} a^{14} - \frac{57286740634204523056518698951}{7218473607383785369942715340660} a^{13} + \frac{17444999904243990505919672659}{1804618401845946342485678835165} a^{12} - \frac{99848494948877697805278347143}{5774778885907028295954172272528} a^{11} + \frac{166939063838452849370325531929}{7218473607383785369942715340660} a^{10} - \frac{2773791893982019622669818906397}{14436947214767570739885430681320} a^{9} + \frac{14856872107772717156301093613}{962463147651171382659028712088} a^{8} - \frac{150613657292457406360201880663}{1203078934563964228323785890110} a^{7} - \frac{12923900603972943725354090596}{40102631152132140944126196337} a^{6} - \frac{58638081692922082825948872632}{1804618401845946342485678835165} a^{5} + \frac{2537176537743202478837810425369}{7218473607383785369942715340660} a^{4} + \frac{1097399561979036739475649538573}{2406157869127928456647571780220} a^{3} + \frac{18877814376800509680162841054}{1804618401845946342485678835165} a^{2} + \frac{358675788203247284112405461753}{1203078934563964228323785890110} a + \frac{768380922239711383876946905636}{1804618401845946342485678835165}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6532127.80174 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.460800.2, 5.1.460800.1 x5, 10.2.1698693120000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.460800.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |