Properties

Label 20.0.20663535755...3125.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{6}\cdot 5^{15}\cdot 23^{6}\cdot 89^{4}$
Root discriminant $29.23$
Ramified primes $3, 5, 23, 89$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 20T369

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![139, -878, 3354, -9424, 21130, -38473, 57542, -71062, 73319, -63646, 46749, -29146, 15574, -7181, 2946, -1110, 416, -147, 45, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 9*x^19 + 45*x^18 - 147*x^17 + 416*x^16 - 1110*x^15 + 2946*x^14 - 7181*x^13 + 15574*x^12 - 29146*x^11 + 46749*x^10 - 63646*x^9 + 73319*x^8 - 71062*x^7 + 57542*x^6 - 38473*x^5 + 21130*x^4 - 9424*x^3 + 3354*x^2 - 878*x + 139)
 
gp: K = bnfinit(x^20 - 9*x^19 + 45*x^18 - 147*x^17 + 416*x^16 - 1110*x^15 + 2946*x^14 - 7181*x^13 + 15574*x^12 - 29146*x^11 + 46749*x^10 - 63646*x^9 + 73319*x^8 - 71062*x^7 + 57542*x^6 - 38473*x^5 + 21130*x^4 - 9424*x^3 + 3354*x^2 - 878*x + 139, 1)
 

Normalized defining polynomial

\( x^{20} - 9 x^{19} + 45 x^{18} - 147 x^{17} + 416 x^{16} - 1110 x^{15} + 2946 x^{14} - 7181 x^{13} + 15574 x^{12} - 29146 x^{11} + 46749 x^{10} - 63646 x^{9} + 73319 x^{8} - 71062 x^{7} + 57542 x^{6} - 38473 x^{5} + 21130 x^{4} - 9424 x^{3} + 3354 x^{2} - 878 x + 139 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(206635357553265518829345703125=3^{6}\cdot 5^{15}\cdot 23^{6}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{3891298500920560026695723755} a^{19} + \frac{129961069667375617297723324}{3891298500920560026695723755} a^{18} - \frac{52744979471564713977398512}{3891298500920560026695723755} a^{17} - \frac{253541128714355300327490041}{3891298500920560026695723755} a^{16} - \frac{331533564066566647812770637}{3891298500920560026695723755} a^{15} + \frac{24647983283608369423919981}{778259700184112005339144751} a^{14} + \frac{309238887416137851679975066}{3891298500920560026695723755} a^{13} - \frac{1779438844537611666674239242}{3891298500920560026695723755} a^{12} - \frac{1924111266223462412630700019}{3891298500920560026695723755} a^{11} - \frac{1218795694756946559704147704}{3891298500920560026695723755} a^{10} + \frac{188079675099585038586943063}{3891298500920560026695723755} a^{9} - \frac{277667600475881718245906057}{778259700184112005339144751} a^{8} - \frac{916775762527360198844331909}{3891298500920560026695723755} a^{7} + \frac{80033452936251996459338642}{778259700184112005339144751} a^{6} + \frac{625445664006764750002279204}{3891298500920560026695723755} a^{5} + \frac{3785091771928484746407156}{13848037369824057034504355} a^{4} - \frac{517069604502797305481286906}{3891298500920560026695723755} a^{3} + \frac{1699691126958416405533338777}{3891298500920560026695723755} a^{2} + \frac{113926443390859123248861349}{3891298500920560026695723755} a + \frac{280158907022856693032450974}{3891298500920560026695723755}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 366014.001413 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T369:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n369 are not computed
Character table for t20n369 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
3.12.0.1$x^{12} - x^{4} - x^{3} - x^{2} + x - 1$$1$$12$$0$$C_{12}$$[\ ]^{12}$
5Data not computed
$23$23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.6.1$x^{8} + 299 x^{4} + 25921$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$89$89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.6.0.1$x^{6} - x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
89.6.0.1$x^{6} - x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$