Normalized defining polynomial
\( x^{20} - 6 x^{19} + 37 x^{18} - 140 x^{17} + 854 x^{16} - 3052 x^{15} + 16372 x^{14} - 49894 x^{13} + 234490 x^{12} - 611754 x^{11} + 2693016 x^{10} - 5992422 x^{9} + 24527620 x^{8} - 44848672 x^{7} + 167779661 x^{6} - 239987380 x^{5} + 799590552 x^{4} - 807249866 x^{3} + 2285123581 x^{2} - 1232813294 x + 2836553039 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2043907289848891215377420272534275751936=2^{30}\cdot 11^{16}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2024=2^{3}\cdot 11\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2024}(1,·)$, $\chi_{2024}(1609,·)$, $\chi_{2024}(45,·)$, $\chi_{2024}(1105,·)$, $\chi_{2024}(597,·)$, $\chi_{2024}(137,·)$, $\chi_{2024}(1241,·)$, $\chi_{2024}(1565,·)$, $\chi_{2024}(93,·)$, $\chi_{2024}(1057,·)$, $\chi_{2024}(229,·)$, $\chi_{2024}(1885,·)$, $\chi_{2024}(553,·)$, $\chi_{2024}(1197,·)$, $\chi_{2024}(829,·)$, $\chi_{2024}(1841,·)$, $\chi_{2024}(1013,·)$, $\chi_{2024}(873,·)$, $\chi_{2024}(185,·)$, $\chi_{2024}(1149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31} a^{15} + \frac{11}{31} a^{14} - \frac{5}{31} a^{13} + \frac{4}{31} a^{12} - \frac{4}{31} a^{11} + \frac{12}{31} a^{10} - \frac{15}{31} a^{9} - \frac{8}{31} a^{8} - \frac{2}{31} a^{7} - \frac{15}{31} a^{6} + \frac{10}{31} a^{5} + \frac{5}{31} a^{4} - \frac{12}{31} a^{3} - \frac{11}{31} a^{2} - \frac{6}{31} a - \frac{8}{31}$, $\frac{1}{31} a^{16} - \frac{2}{31} a^{14} - \frac{3}{31} a^{13} + \frac{14}{31} a^{12} - \frac{6}{31} a^{11} + \frac{8}{31} a^{10} + \frac{2}{31} a^{9} - \frac{7}{31} a^{8} + \frac{7}{31} a^{7} - \frac{11}{31} a^{6} - \frac{12}{31} a^{5} - \frac{5}{31} a^{4} - \frac{3}{31} a^{3} - \frac{9}{31} a^{2} - \frac{4}{31} a - \frac{5}{31}$, $\frac{1}{31} a^{17} - \frac{12}{31} a^{14} + \frac{4}{31} a^{13} + \frac{2}{31} a^{12} - \frac{5}{31} a^{10} - \frac{6}{31} a^{9} - \frac{9}{31} a^{8} - \frac{15}{31} a^{7} - \frac{11}{31} a^{6} + \frac{15}{31} a^{5} + \frac{7}{31} a^{4} - \frac{2}{31} a^{3} + \frac{5}{31} a^{2} + \frac{14}{31} a + \frac{15}{31}$, $\frac{1}{2728588336631173612121} a^{18} - \frac{16852172048705003613}{2728588336631173612121} a^{17} + \frac{37565472888323780773}{2728588336631173612121} a^{16} - \frac{35845049306058840552}{2728588336631173612121} a^{15} + \frac{1343676905472448207122}{2728588336631173612121} a^{14} + \frac{1132286516577722990683}{2728588336631173612121} a^{13} + \frac{1265634734439992146027}{2728588336631173612121} a^{12} - \frac{68541018748580671237}{2728588336631173612121} a^{11} - \frac{387855770843876230671}{2728588336631173612121} a^{10} - \frac{1098956761960223746603}{2728588336631173612121} a^{9} - \frac{14198909625539096905}{30658295917204197889} a^{8} - \frac{126785732394156998077}{2728588336631173612121} a^{7} - \frac{29346462892317900678}{2728588336631173612121} a^{6} + \frac{467668717281068051287}{2728588336631173612121} a^{5} - \frac{21309251912438617051}{118634275505703200527} a^{4} + \frac{16400604578904153827}{88018978601005600391} a^{3} - \frac{94419337941638287797}{2728588336631173612121} a^{2} + \frac{20256354606190244952}{118634275505703200527} a + \frac{56881485813939614697}{118634275505703200527}$, $\frac{1}{8223358027319367589563728592168378410549564721221801} a^{19} - \frac{1122223020604695139775918220373}{8223358027319367589563728592168378410549564721221801} a^{18} - \frac{18110578067254329859210369082245618063576372590121}{8223358027319367589563728592168378410549564721221801} a^{17} + \frac{78712521715212402276251093828913825915120513354004}{8223358027319367589563728592168378410549564721221801} a^{16} + \frac{94560094271293763214058129775420858882074001415448}{8223358027319367589563728592168378410549564721221801} a^{15} + \frac{74528622040957987000342286100396434808816886288790}{265269613784495728695604148134463819695147249071671} a^{14} + \frac{2569345683618720394366419505963597313084687257412554}{8223358027319367589563728592168378410549564721221801} a^{13} + \frac{1579318116625783093291756221615343863048637958301205}{8223358027319367589563728592168378410549564721221801} a^{12} - \frac{1404705049705524063462195567951607792556736396216438}{8223358027319367589563728592168378410549564721221801} a^{11} + \frac{1008346827547813597398058936283268440366239414274707}{8223358027319367589563728592168378410549564721221801} a^{10} - \frac{3034361922944931634099196813542748632043806427295612}{8223358027319367589563728592168378410549564721221801} a^{9} + \frac{1586528657440947855772216614105485960542333892897724}{8223358027319367589563728592168378410549564721221801} a^{8} - \frac{3786853334339520604125116956504133850077365786623987}{8223358027319367589563728592168378410549564721221801} a^{7} - \frac{2769920202138631010866241586625090156555156928552312}{8223358027319367589563728592168378410549564721221801} a^{6} - \frac{1468450492051288269641903803176244658264139555651653}{8223358027319367589563728592168378410549564721221801} a^{5} + \frac{1942185190403479547669571719472376130950180765813333}{8223358027319367589563728592168378410549564721221801} a^{4} - \frac{340493492235624634548843941769627979336036343051419}{8223358027319367589563728592168378410549564721221801} a^{3} + \frac{473360203013255036534149123286346106594052539559532}{8223358027319367589563728592168378410549564721221801} a^{2} - \frac{173571463485318904241975920333710156539583677702636}{357537305535624677807118634442103409154328900922687} a - \frac{67686603715581536536980198175125101601150412416899}{357537305535624677807118634442103409154328900922687}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1230}$, which has order $314880$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-46}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-23})\), \(\Q(\zeta_{11})^+\), 10.0.45209592896296812544.1, 10.0.1379687283212183.1, 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |