Normalized defining polynomial
\( x^{20} - x^{19} + 6 x^{18} - 7 x^{17} + 30 x^{16} - 18 x^{15} + 123 x^{14} - 78 x^{13} + 538 x^{12} - 412 x^{11} + 704 x^{10} - 501 x^{9} + 837 x^{8} + 172 x^{7} + 309 x^{6} + 49 x^{5} + 174 x^{4} - 46 x^{3} + 13 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20403517554797011816436767578125=5^{15}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1417708231} a^{17} + \frac{384167857}{1417708231} a^{16} + \frac{637500389}{1417708231} a^{15} - \frac{134369331}{1417708231} a^{14} + \frac{605418008}{1417708231} a^{13} - \frac{311749414}{1417708231} a^{12} + \frac{208049519}{1417708231} a^{11} + \frac{78541616}{1417708231} a^{10} - \frac{549468139}{1417708231} a^{9} + \frac{686496298}{1417708231} a^{8} - \frac{644161275}{1417708231} a^{7} - \frac{489623395}{1417708231} a^{6} + \frac{232383097}{1417708231} a^{5} + \frac{321375228}{1417708231} a^{4} + \frac{128034204}{1417708231} a^{3} + \frac{158908518}{1417708231} a^{2} - \frac{15990677}{1417708231} a - \frac{149797153}{1417708231}$, $\frac{1}{1417708231} a^{18} + \frac{662726879}{1417708231} a^{16} + \frac{484932519}{1417708231} a^{15} - \frac{6714589}{1417708231} a^{14} + \frac{397177271}{1417708231} a^{13} + \frac{506524719}{1417708231} a^{12} + \frac{674365493}{1417708231} a^{11} + \frac{236237116}{1417708231} a^{10} - \frac{276252692}{1417708231} a^{9} - \frac{644775711}{1417708231} a^{8} + \frac{466747914}{1417708231} a^{7} - \frac{638809667}{1417708231} a^{6} + \frac{506107805}{1417708231} a^{5} + \frac{377415341}{1417708231} a^{4} + \frac{150752643}{1417708231} a^{3} - \frac{569769128}{1417708231} a^{2} - \frac{177763377}{1417708231} a + \frac{255558026}{1417708231}$, $\frac{1}{1417708231} a^{19} - \frac{130521986}{1417708231} a^{16} - \frac{567182095}{1417708231} a^{15} - \frac{517410571}{1417708231} a^{14} - \frac{437154121}{1417708231} a^{13} - \frac{449439250}{1417708231} a^{12} - \frac{245569725}{1417708231} a^{11} - \frac{597585616}{1417708231} a^{10} - \frac{646655140}{1417708231} a^{9} - \frac{167879803}{1417708231} a^{8} + \frac{221075082}{1417708231} a^{7} - \frac{405494546}{1417708231} a^{6} - \frac{117115702}{1417708231} a^{5} + \frac{14865276}{1417708231} a^{4} + \frac{8276476}{1417708231} a^{3} - \frac{277849714}{1417708231} a^{2} + \frac{463062711}{1417708231} a + \frac{456636863}{1417708231}$
Class group and class number
$C_{29}$, which has order $29$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{325947825}{1417708231} a^{19} - \frac{216420225}{1417708231} a^{18} + \frac{1847037675}{1417708231} a^{17} - \frac{1629739125}{1417708231} a^{16} + \frac{9017889825}{1417708231} a^{15} - \frac{2607582600}{1417708231} a^{14} + \frac{38154039180}{1417708231} a^{13} - \frac{12060069525}{1417708231} a^{12} + \frac{166885286400}{1417708231} a^{11} - \frac{75837193950}{1417708231} a^{10} + \frac{184703767500}{1417708231} a^{9} - \frac{88343307058}{1417708231} a^{8} + \frac{218385042750}{1417708231} a^{7} + \frac{147002469075}{1417708231} a^{6} + \frac{119405553225}{1417708231} a^{5} + \frac{49544069400}{1417708231} a^{4} + \frac{58447871898}{1417708231} a^{3} + \frac{3911373900}{1417708231} a^{2} - \frac{760544925}{1417708231} a + \frac{434597100}{1417708231} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2526424.45141 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_5$ (as 20T6):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_4\times D_5$ |
| Character table for $C_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||