Normalized defining polynomial
\( x^{20} - 2 x^{19} + 8 x^{18} - 2 x^{17} + 15 x^{16} - 31 x^{15} - x^{14} - 103 x^{13} + 56 x^{12} - 157 x^{11} + 513 x^{10} + 192 x^{9} + 1700 x^{8} + 1351 x^{7} + 1130 x^{6} - 130 x^{5} + 511 x^{4} - 1591 x^{3} - 1019 x^{2} - 331 x + 859 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203681981950950327645213870961=11^{16}\cdot 1451^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{79022} a^{18} - \frac{8969}{39511} a^{17} + \frac{12379}{79022} a^{16} + \frac{8939}{39511} a^{15} + \frac{13751}{39511} a^{14} + \frac{11905}{39511} a^{13} + \frac{12177}{39511} a^{12} + \frac{19638}{39511} a^{11} - \frac{10405}{39511} a^{10} - \frac{8164}{39511} a^{9} + \frac{14902}{39511} a^{8} + \frac{5076}{39511} a^{7} + \frac{4211}{79022} a^{6} + \frac{18415}{39511} a^{5} + \frac{35133}{79022} a^{4} + \frac{4967}{79022} a^{3} - \frac{30091}{79022} a^{2} - \frac{17403}{79022} a + \frac{6874}{39511}$, $\frac{1}{90829839140299270170106191987598} a^{19} - \frac{200422935847590296756686901}{90829839140299270170106191987598} a^{18} + \frac{1356269762073101644738087264041}{45414919570149635085053095993799} a^{17} + \frac{1156514735211332918954876114943}{45414919570149635085053095993799} a^{16} + \frac{3960695314990180514767969918383}{45414919570149635085053095993799} a^{15} - \frac{3788059046067964799512562458633}{90829839140299270170106191987598} a^{14} - \frac{9311418740608267025198163889711}{45414919570149635085053095993799} a^{13} - \frac{33718664045710776218590473451319}{90829839140299270170106191987598} a^{12} - \frac{21690998964781462429757431464623}{90829839140299270170106191987598} a^{11} - \frac{2574000210875558220638721634533}{45414919570149635085053095993799} a^{10} + \frac{42415027992489866715553979436261}{90829839140299270170106191987598} a^{9} - \frac{13842606020381862770043458583333}{90829839140299270170106191987598} a^{8} + \frac{41058914176326355515873029053879}{90829839140299270170106191987598} a^{7} + \frac{15987075667150129476300483142354}{45414919570149635085053095993799} a^{6} + \frac{4783011599968579267014712560329}{90829839140299270170106191987598} a^{5} - \frac{22325100234726973710817341313069}{90829839140299270170106191987598} a^{4} - \frac{25230137978526685724164525567579}{90829839140299270170106191987598} a^{3} + \frac{2313839262149421986398941186757}{90829839140299270170106191987598} a^{2} - \frac{39473615150587390059414409852927}{90829839140299270170106191987598} a + \frac{12792507578092002743970822903385}{90829839140299270170106191987598}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2063292.90078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n314 |
| Character table for t20n314 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.311034736331.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 1451 | Data not computed | ||||||