Normalized defining polynomial
\( x^{20} - 6 x^{19} - 2 x^{18} + 64 x^{17} - 14 x^{16} - 436 x^{15} + 478 x^{14} + 806 x^{13} - 353 x^{12} - 3450 x^{11} + 4838 x^{10} - 4132 x^{9} + 8903 x^{8} - 13704 x^{7} + 21364 x^{6} - 16984 x^{5} + 18589 x^{4} - 20038 x^{3} + 35838 x^{2} - 13398 x + 17123 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202784731012754939641986471226953957376=2^{30}\cdot 7^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{4}{13} a^{16} - \frac{1}{13} a^{15} - \frac{1}{13} a^{14} + \frac{3}{13} a^{13} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{2}{13} a^{8} - \frac{4}{13} a^{7} + \frac{4}{13} a^{6} + \frac{5}{13} a^{5} - \frac{5}{13} a^{4} - \frac{5}{13} a^{3} - \frac{6}{13} a^{2} + \frac{6}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{18} - \frac{4}{13} a^{16} + \frac{3}{13} a^{15} - \frac{6}{13} a^{14} + \frac{1}{13} a^{13} + \frac{4}{13} a^{11} - \frac{4}{13} a^{10} + \frac{2}{13} a^{9} + \frac{4}{13} a^{8} - \frac{6}{13} a^{7} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} + \frac{2}{13} a^{4} + \frac{1}{13} a^{3} + \frac{4}{13} a^{2} - \frac{6}{13} a + \frac{6}{13}$, $\frac{1}{37645568501116350216497243075029069615006241} a^{19} + \frac{7125729384846329896168994983030892687633}{2895812961624334632038249467309928431923557} a^{18} + \frac{182764806493982988867392460640524405324088}{37645568501116350216497243075029069615006241} a^{17} + \frac{16324437831509296829970927571013737787257547}{37645568501116350216497243075029069615006241} a^{16} + \frac{17592207235144369971638266181937772464058308}{37645568501116350216497243075029069615006241} a^{15} - \frac{10998042047911819142908032834985674048768894}{37645568501116350216497243075029069615006241} a^{14} - \frac{13020112875650641262271751118411444486741654}{37645568501116350216497243075029069615006241} a^{13} - \frac{14402659641346401419303359580435431355994914}{37645568501116350216497243075029069615006241} a^{12} - \frac{2822428401609716678788793598363019022308189}{37645568501116350216497243075029069615006241} a^{11} + \frac{1339495483227671289940126615512522952020456}{2895812961624334632038249467309928431923557} a^{10} + \frac{8632702480879627254298483240495949373402042}{37645568501116350216497243075029069615006241} a^{9} + \frac{399291561871845082102463814682023358851518}{37645568501116350216497243075029069615006241} a^{8} - \frac{11344274497795235730247890019056904029969218}{37645568501116350216497243075029069615006241} a^{7} - \frac{16033353937538149289802816441724551349496871}{37645568501116350216497243075029069615006241} a^{6} + \frac{11285820924913652277861294097562573260513930}{37645568501116350216497243075029069615006241} a^{5} - \frac{153112966342230665544745099123512112020103}{37645568501116350216497243075029069615006241} a^{4} + \frac{1440312891258408463104264722185152572613349}{2895812961624334632038249467309928431923557} a^{3} - \frac{18455329955790570940708678777829744186755950}{37645568501116350216497243075029069615006241} a^{2} + \frac{10162489952790614490360882588059224613859416}{37645568501116350216497243075029069615006241} a + \frac{14609638266929485216365194483625120253307472}{37645568501116350216497243075029069615006241}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99133769895.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.0.3136.1, 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 401 | Data not computed | ||||||