Normalized defining polynomial
\( x^{20} - 4 x^{19} + 34 x^{18} - 96 x^{17} + 337 x^{16} - 610 x^{15} + 1271 x^{14} - 1037 x^{13} + 2070 x^{12} + 2371 x^{11} + 5375 x^{10} + 6616 x^{9} + 42851 x^{8} - 19136 x^{7} + 183155 x^{6} - 111821 x^{5} + 401105 x^{4} - 200424 x^{3} + 487862 x^{2} - 125820 x + 297859 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20213777905110009806334605947265625=3^{10}\cdot 5^{10}\cdot 19^{5}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11699979130529178071396153205651840539796240557904833} a^{19} + \frac{5100030669219332937214154878882953029302590874751911}{11699979130529178071396153205651840539796240557904833} a^{18} - \frac{5424692906331882413938285252619834175495705035871398}{11699979130529178071396153205651840539796240557904833} a^{17} - \frac{832840737406060236260774802297338631572831551894630}{11699979130529178071396153205651840539796240557904833} a^{16} - \frac{5463959560381270627085947015897426796990260370668818}{11699979130529178071396153205651840539796240557904833} a^{15} + \frac{3546971752084865506471131741376449998341590489929475}{11699979130529178071396153205651840539796240557904833} a^{14} - \frac{5050087129563381180532508080193751923489645370239703}{11699979130529178071396153205651840539796240557904833} a^{13} - \frac{2651749488443387761971808683704202261451999047655876}{11699979130529178071396153205651840539796240557904833} a^{12} + \frac{2847658724084490175358427712800231280162582856382018}{11699979130529178071396153205651840539796240557904833} a^{11} + \frac{255751255779185444052977253734471175622397922154951}{615788375291009372178744905560623186305065292521307} a^{10} - \frac{3230857801581614965321058103469282897664621463098958}{11699979130529178071396153205651840539796240557904833} a^{9} - \frac{145462152572169477355159249749741242468511383004241}{11699979130529178071396153205651840539796240557904833} a^{8} + \frac{127487579744113358107973718814729470999307757209283}{615788375291009372178744905560623186305065292521307} a^{7} - \frac{1750726462525827926831964155105961679886516727586987}{11699979130529178071396153205651840539796240557904833} a^{6} + \frac{4220379708008631394653036646716522712328444890917121}{11699979130529178071396153205651840539796240557904833} a^{5} - \frac{5158772065782012644679556464891299574670535746137736}{11699979130529178071396153205651840539796240557904833} a^{4} - \frac{89532703607759976382408858021069885883295922470205}{11699979130529178071396153205651840539796240557904833} a^{3} + \frac{85345805744955855541105792776901821065080639785505}{615788375291009372178744905560623186305065292521307} a^{2} + \frac{1477778612259257902023093969163987304114774061062519}{11699979130529178071396153205651840539796240557904833} a - \frac{3989251025212205563866558660082844296035347162065865}{11699979130529178071396153205651840539796240557904833}$
Class group and class number
$C_{2}\times C_{1116}$, which has order $2232$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 351148.02443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.7263225.5, 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 1699 | Data not computed | ||||||