Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} - 11 x^{17} + 27 x^{16} - 64 x^{15} + 67 x^{14} - 41 x^{13} + 185 x^{12} - 419 x^{11} + 436 x^{10} - 249 x^{9} + 491 x^{8} - 976 x^{7} + 1931 x^{6} - 2345 x^{5} + 1655 x^{4} - 708 x^{3} + 1268 x^{2} - 1378 x + 547 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201707501835641831643973969=61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{7}{17} a^{17} + \frac{5}{17} a^{16} - \frac{6}{17} a^{15} + \frac{3}{17} a^{14} + \frac{7}{17} a^{13} + \frac{6}{17} a^{12} - \frac{8}{17} a^{11} + \frac{8}{17} a^{10} + \frac{3}{17} a^{9} - \frac{1}{17} a^{8} - \frac{7}{17} a^{7} + \frac{1}{17} a^{6} + \frac{3}{17} a^{5} - \frac{3}{17} a^{4} + \frac{8}{17} a^{2} - \frac{8}{17} a - \frac{4}{17}$, $\frac{1}{1551804915616887050930592363490885} a^{19} - \frac{27202053081130233819973755014552}{1551804915616887050930592363490885} a^{18} - \frac{751476528436365384216985132507826}{1551804915616887050930592363490885} a^{17} + \frac{701353975194033854415590398206042}{1551804915616887050930592363490885} a^{16} + \frac{589580028178937137055379269910891}{1551804915616887050930592363490885} a^{15} - \frac{147126387737134031614536065633407}{1551804915616887050930592363490885} a^{14} - \frac{683753113656336386507614752076947}{1551804915616887050930592363490885} a^{13} + \frac{19516670462841728484521597545002}{310360983123377410186118472698177} a^{12} - \frac{78438556620295230799438296532875}{310360983123377410186118472698177} a^{11} - \frac{66929056767173754513662683185139}{1551804915616887050930592363490885} a^{10} - \frac{75147041590321353417220368472642}{1551804915616887050930592363490885} a^{9} - \frac{585478966588035655466362448200008}{1551804915616887050930592363490885} a^{8} - \frac{113509669170892918530171378289275}{310360983123377410186118472698177} a^{7} + \frac{382389052079139927664477005154684}{1551804915616887050930592363490885} a^{6} - \frac{692286012541711330958276842071021}{1551804915616887050930592363490885} a^{5} + \frac{545210049448854032072688746475388}{1551804915616887050930592363490885} a^{4} + \frac{535403378304729598687660345488536}{1551804915616887050930592363490885} a^{3} - \frac{596130101101858982209816259532281}{1551804915616887050930592363490885} a^{2} + \frac{673927029220114669944811337950486}{1551804915616887050930592363490885} a - \frac{543098059919562355612228878130371}{1551804915616887050930592363490885}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70235.2910255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.232825846333.1, 10.6.35774248429.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||