Normalized defining polynomial
\( x^{20} - 8 x^{19} + 57 x^{18} - 268 x^{17} + 1305 x^{16} - 4868 x^{15} + 18820 x^{14} - 58074 x^{13} + 190380 x^{12} - 496518 x^{11} + 1417274 x^{10} - 3119270 x^{9} + 7888313 x^{8} - 14323286 x^{7} + 32582283 x^{6} - 46229958 x^{5} + 96425775 x^{4} - 94586934 x^{3} + 187924326 x^{2} - 93204582 x + 185992621 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2012875387628441371387683404151209769=3^{10}\cdot 11^{18}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(627=3\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{627}(512,·)$, $\chi_{627}(1,·)$, $\chi_{627}(322,·)$, $\chi_{627}(134,·)$, $\chi_{627}(265,·)$, $\chi_{627}(398,·)$, $\chi_{627}(400,·)$, $\chi_{627}(590,·)$, $\chi_{627}(37,·)$, $\chi_{627}(227,·)$, $\chi_{627}(229,·)$, $\chi_{627}(362,·)$, $\chi_{627}(493,·)$, $\chi_{627}(305,·)$, $\chi_{627}(626,·)$, $\chi_{627}(115,·)$, $\chi_{627}(248,·)$, $\chi_{627}(569,·)$, $\chi_{627}(58,·)$, $\chi_{627}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{56443886891869865288553228781212796515897735827511208151498} a^{19} + \frac{2118448718550882212049578751644206103620832462217347360281}{56443886891869865288553228781212796515897735827511208151498} a^{18} - \frac{2794201434621478472940088644300002729982068699443491870972}{28221943445934932644276614390606398257948867913755604075749} a^{17} - \frac{3817042776353978288765342391133099972513959818033679273337}{56443886891869865288553228781212796515897735827511208151498} a^{16} - \frac{2880252957667890163073681404028824093421878873702102356489}{28221943445934932644276614390606398257948867913755604075749} a^{15} - \frac{202592427891689596150381995636787307136628080073638691106}{28221943445934932644276614390606398257948867913755604075749} a^{14} - \frac{6122701896932955414158174061718666928752131044719260674405}{56443886891869865288553228781212796515897735827511208151498} a^{13} + \frac{6843886573578178824970290117689722484900602916760015646367}{28221943445934932644276614390606398257948867913755604075749} a^{12} - \frac{6907831766173871883262258658777261150267159952183350741552}{28221943445934932644276614390606398257948867913755604075749} a^{11} - \frac{3887789184361893384873573722393675001500132920774213965526}{28221943445934932644276614390606398257948867913755604075749} a^{10} + \frac{10633417284258446585291137065832449691595374043926688807120}{28221943445934932644276614390606398257948867913755604075749} a^{9} + \frac{17083208627724508180604058495299459150571098489807142123565}{56443886891869865288553228781212796515897735827511208151498} a^{8} - \frac{19537543888774527441466783190304283086450374427611889816077}{56443886891869865288553228781212796515897735827511208151498} a^{7} + \frac{19183638421910484174950297150632956904796941457232236130563}{56443886891869865288553228781212796515897735827511208151498} a^{6} + \frac{27008802134868546604205539728687341011557740501346297497153}{56443886891869865288553228781212796515897735827511208151498} a^{5} - \frac{8890096784885728301854923496078505753911355859753015059482}{28221943445934932644276614390606398257948867913755604075749} a^{4} + \frac{18495245716599174445040414117276671233258809597111390869821}{56443886891869865288553228781212796515897735827511208151498} a^{3} - \frac{16828968540752987093957663638544883066095735620597003267207}{56443886891869865288553228781212796515897735827511208151498} a^{2} + \frac{8084152855137962442368502254018098555594338097185300605755}{28221943445934932644276614390606398257948867913755604075749} a + \frac{90881100517188757618774537499404213650945768320451494003}{430869365586792864798116250238265622258761342194742046958}$
Class group and class number
$C_{44110}$, which has order $44110$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-627}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-19}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\), 10.0.1418758396496190387.1, 10.0.530773810885219.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||