Normalized defining polynomial
\( x^{20} - 4 x^{19} + x^{18} + 14 x^{17} - 24 x^{16} - 21 x^{15} + 164 x^{14} - 208 x^{13} - 67 x^{12} + 551 x^{11} - 595 x^{10} - 97 x^{9} + 985 x^{8} - 1230 x^{7} + 860 x^{6} - 496 x^{5} + 330 x^{4} - 187 x^{3} + 44 x^{2} + 11 x + 11 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2005018537548922694563074277=11^{17}\cdot 1583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{17} + \frac{3}{11} a^{16} + \frac{4}{11} a^{15} - \frac{4}{11} a^{14} + \frac{4}{11} a^{13} - \frac{4}{11} a^{12} + \frac{4}{11} a^{11} - \frac{4}{11} a^{10} + \frac{4}{11} a^{9} - \frac{4}{11} a^{8} + \frac{5}{11} a^{7} + \frac{2}{11} a^{6} - \frac{4}{11} a^{5}$, $\frac{1}{3789619394185409888750383} a^{19} + \frac{61274359202123102728416}{3789619394185409888750383} a^{18} + \frac{920520313364261204497352}{3789619394185409888750383} a^{17} - \frac{727718456576892788562927}{3789619394185409888750383} a^{16} + \frac{172580682430459397528750}{3789619394185409888750383} a^{15} + \frac{454189723527316307101200}{3789619394185409888750383} a^{14} - \frac{586713160160786698450623}{3789619394185409888750383} a^{13} - \frac{541241037266365359049310}{3789619394185409888750383} a^{12} + \frac{1695210722401613290728280}{3789619394185409888750383} a^{11} + \frac{1198708000974477466793664}{3789619394185409888750383} a^{10} - \frac{306304896316757939096048}{3789619394185409888750383} a^{9} - \frac{759382316321879698968560}{3789619394185409888750383} a^{8} - \frac{1345635570192980906920613}{3789619394185409888750383} a^{7} + \frac{927402574771164181222381}{3789619394185409888750383} a^{6} + \frac{1271118605088243160543403}{3789619394185409888750383} a^{5} - \frac{154391549244293215864098}{344510854016855444431853} a^{4} - \frac{108694841703109660267730}{344510854016855444431853} a^{3} + \frac{120618876547850807468101}{344510854016855444431853} a^{2} - \frac{109024209619580205352766}{344510854016855444431853} a + \frac{24417874783815092892145}{344510854016855444431853}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222104.62467 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n432 are not computed |
| Character table for t20n432 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.339330108623.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||