Properties

Label 20.0.20044930914...1569.1
Degree $20$
Signature $[0, 10]$
Discriminant $19^{10}\cdot 83^{6}$
Root discriminant $16.41$
Ramified primes $19, 83$
Class number $1$
Class group Trivial
Galois group 20T288

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 0, 84, 0, 161, 0, 194, 0, 171, 0, 115, 0, 67, 0, 31, 0, 11, 0, 2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 2*x^18 + 11*x^16 + 31*x^14 + 67*x^12 + 115*x^10 + 171*x^8 + 194*x^6 + 161*x^4 + 84*x^2 + 16)
 
gp: K = bnfinit(x^20 + 2*x^18 + 11*x^16 + 31*x^14 + 67*x^12 + 115*x^10 + 171*x^8 + 194*x^6 + 161*x^4 + 84*x^2 + 16, 1)
 

Normalized defining polynomial

\( x^{20} + 2 x^{18} + 11 x^{16} + 31 x^{14} + 67 x^{12} + 115 x^{10} + 171 x^{8} + 194 x^{6} + 161 x^{4} + 84 x^{2} + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2004493091475536548901569=19^{10}\cdot 83^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 83$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{206} a^{16} - \frac{7}{103} a^{14} - \frac{7}{206} a^{12} + \frac{29}{206} a^{10} - \frac{21}{103} a^{8} + \frac{26}{103} a^{6} - \frac{1}{2} a^{5} - \frac{38}{103} a^{4} - \frac{1}{2} a^{3} + \frac{53}{206} a^{2} + \frac{46}{103}$, $\frac{1}{206} a^{17} - \frac{7}{103} a^{15} - \frac{7}{206} a^{13} + \frac{29}{206} a^{11} - \frac{21}{103} a^{9} + \frac{26}{103} a^{7} - \frac{1}{2} a^{6} - \frac{38}{103} a^{5} - \frac{1}{2} a^{4} + \frac{53}{206} a^{3} + \frac{46}{103} a$, $\frac{1}{35432} a^{18} - \frac{1}{412} a^{17} - \frac{7}{17716} a^{16} + \frac{7}{206} a^{15} - \frac{625}{35432} a^{14} + \frac{7}{412} a^{13} + \frac{4355}{35432} a^{12} - \frac{29}{412} a^{11} + \frac{7271}{35432} a^{10} - \frac{61}{412} a^{9} - \frac{17149}{35432} a^{8} + \frac{51}{412} a^{7} + \frac{221}{824} a^{6} + \frac{179}{412} a^{5} - \frac{849}{17716} a^{4} - \frac{39}{103} a^{3} + \frac{4109}{35432} a^{2} + \frac{11}{412} a + \frac{31}{86}$, $\frac{1}{70864} a^{19} + \frac{79}{35432} a^{17} + \frac{14683}{70864} a^{15} - \frac{14565}{70864} a^{13} - \frac{5457}{70864} a^{11} - \frac{6657}{70864} a^{9} - \frac{395}{1648} a^{7} - \frac{1}{2} a^{6} + \frac{10331}{35432} a^{5} - \frac{1}{2} a^{4} + \frac{13225}{70864} a^{3} - \frac{1}{2} a^{2} - \frac{3069}{8858} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14407.5933023 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T288:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for t20n288
Character table for t20n288 is not computed

Intermediate fields

\(\Q(\sqrt{-19}) \), 5.3.29963.1, 10.2.1415801218913.1, 10.0.17057846011.1, 10.4.74515853627.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.8.4.1$x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
19.8.4.1$x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
83Data not computed