Normalized defining polynomial
\( x^{20} + 110 x^{18} + 18755 x^{16} - 902 x^{15} + 1650440 x^{14} + 297660 x^{13} + 140041165 x^{12} + 1637130 x^{11} + 8913543045 x^{10} + 1806845810 x^{9} + 474391226650 x^{8} + 39024267810 x^{7} + 20069393424575 x^{6} + 1638272498456 x^{5} + 628697885710730 x^{4} - 40333066477110 x^{3} + 14175271751235155 x^{2} - 4212066055510280 x + 165264883180898149 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200383030666749741651348266601562500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $462.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(1451,·)$, $\chi_{3300}(709,·)$, $\chi_{3300}(1031,·)$, $\chi_{3300}(841,·)$, $\chi_{3300}(1679,·)$, $\chi_{3300}(2219,·)$, $\chi_{3300}(1849,·)$, $\chi_{3300}(1081,·)$, $\chi_{3300}(2459,·)$, $\chi_{3300}(2269,·)$, $\chi_{3300}(2591,·)$, $\chi_{3300}(3299,·)$, $\chi_{3300}(2471,·)$, $\chi_{3300}(361,·)$, $\chi_{3300}(2411,·)$, $\chi_{3300}(889,·)$, $\chi_{3300}(2939,·)$, $\chi_{3300}(829,·)$, $\chi_{3300}(1621,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{11} a^{7}$, $\frac{1}{11} a^{8}$, $\frac{1}{121} a^{9} + \frac{3}{11} a^{4}$, $\frac{1}{3751} a^{10} + \frac{5}{341} a^{8} + \frac{2}{341} a^{6} - \frac{10}{341} a^{5} - \frac{10}{31} a^{4} + \frac{9}{31} a^{3} + \frac{11}{31} a^{2} - \frac{3}{31} a + \frac{1}{31}$, $\frac{1}{3751} a^{11} - \frac{7}{3751} a^{9} + \frac{2}{341} a^{7} - \frac{10}{341} a^{6} + \frac{14}{341} a^{5} - \frac{87}{341} a^{4} + \frac{11}{31} a^{3} - \frac{3}{31} a^{2} + \frac{1}{31} a$, $\frac{1}{3751} a^{12} + \frac{6}{341} a^{8} - \frac{10}{341} a^{7} - \frac{3}{341} a^{6} - \frac{2}{341} a^{5} + \frac{3}{31} a^{4} - \frac{2}{31} a^{3} - \frac{15}{31} a^{2} + \frac{10}{31} a + \frac{7}{31}$, $\frac{1}{41261} a^{13} + \frac{6}{3751} a^{9} + \frac{83}{3751} a^{8} + \frac{1}{31} a^{7} - \frac{3}{341} a^{6} + \frac{3}{341} a^{5} + \frac{29}{341} a^{4} - \frac{46}{341} a^{3} + \frac{15}{31} a^{2} - \frac{5}{31} a$, $\frac{1}{41261} a^{14} - \frac{10}{3751} a^{9} + \frac{12}{341} a^{8} - \frac{3}{341} a^{7} - \frac{9}{341} a^{6} - \frac{4}{341} a^{5} - \frac{6}{341} a^{4} - \frac{8}{31} a^{3} - \frac{9}{31} a^{2} - \frac{13}{31} a - \frac{6}{31}$, $\frac{1}{63088069} a^{15} - \frac{46}{5735279} a^{14} - \frac{32}{5735279} a^{13} - \frac{28}{521389} a^{12} - \frac{47}{521389} a^{11} + \frac{61}{5735279} a^{10} + \frac{206}{521389} a^{9} - \frac{14688}{521389} a^{8} - \frac{398}{47399} a^{7} + \frac{20}{1529} a^{6} + \frac{11207}{521389} a^{5} + \frac{20271}{47399} a^{4} + \frac{19214}{47399} a^{3} + \frac{190}{4309} a^{2} + \frac{1575}{4309} a + \frac{1039}{4309}$, $\frac{1}{2586610829} a^{16} - \frac{135}{21376949} a^{14} + \frac{1}{5735279} a^{13} + \frac{1492}{21376949} a^{12} - \frac{2}{5735279} a^{11} + \frac{232}{21376949} a^{10} + \frac{689}{521389} a^{9} + \frac{876528}{21376949} a^{8} + \frac{948}{47399} a^{7} + \frac{642651}{21376949} a^{6} + \frac{1365}{47399} a^{5} - \frac{89863}{1943359} a^{4} + \frac{9447}{47399} a^{3} - \frac{80344}{176669} a^{2} + \frac{1583}{4309} a + \frac{36593}{176669}$, $\frac{1}{2586610829} a^{17} - \frac{17}{2586610829} a^{15} + \frac{41}{5735279} a^{14} + \frac{1447}{235146439} a^{13} - \frac{266}{5735279} a^{12} + \frac{241}{1943359} a^{11} - \frac{252}{5735279} a^{10} + \frac{26475}{21376949} a^{9} - \frac{12130}{521389} a^{8} + \frac{542529}{21376949} a^{7} + \frac{10}{47399} a^{6} - \frac{474968}{21376949} a^{5} + \frac{21699}{47399} a^{4} + \frac{886473}{1943359} a^{3} + \frac{1865}{4309} a^{2} + \frac{29254}{176669} a - \frac{27}{139}$, $\frac{1}{28452719119} a^{18} - \frac{2033}{235146439} a^{14} - \frac{134}{63088069} a^{13} - \frac{640}{21376949} a^{12} - \frac{96}{5735279} a^{11} + \frac{2251}{21376949} a^{10} - \frac{384}{521389} a^{9} - \frac{5980471}{235146439} a^{8} + \frac{270}{47399} a^{7} - \frac{79542}{21376949} a^{6} - \frac{1284}{47399} a^{5} - \frac{642373}{1943359} a^{4} - \frac{3233}{47399} a^{3} - \frac{84452}{176669} a^{2} - \frac{615}{4309} a - \frac{76153}{176669}$, $\frac{1}{74646723796241905916817094751613053681139629884798902199820547311272545701125337} a^{19} + \frac{358685047382805207673882519825775479436017659722504479500854391797}{48820617263729173261489270602755430792112249761150361150961770641774065206753} a^{18} - \frac{476669182939199994957966768238685226815354514142302555262692851478555}{6786065799658355083347008613783004880103602716799900199983686119206595063738667} a^{17} - \frac{1014026718532365694099890612552985743025464909314290386251444576829795}{6786065799658355083347008613783004880103602716799900199983686119206595063738667} a^{16} - \frac{37994058651306051151284515099136400107222715928007643885292248534766630}{6786065799658355083347008613783004880103602716799900199983686119206595063738667} a^{15} + \frac{56839967769405089006039885621741171563206087567683725977480123244644182539}{6786065799658355083347008613783004880103602716799900199983686119206595063738667} a^{14} + \frac{284672131172848274078669850077571756181868922918444406563850785683648387}{56083188426928554407826517469281032066971923279338018181683356357079298047427} a^{13} + \frac{18118040869579696446946817883242676446660966767760142789831750602575646951}{616915072696214098486091692162091352736691156072718199998516919927872278521697} a^{12} + \frac{28868048040340658490144540336517244351767500724149794583942773803416198889}{616915072696214098486091692162091352736691156072718199998516919927872278521697} a^{11} + \frac{61024224893987355458700266878561416751227565586097006878634911324099978172}{616915072696214098486091692162091352736691156072718199998516919927872278521697} a^{10} - \frac{563532095072148776761706110401650431929932090387948647043332646115125154478}{616915072696214098486091692162091352736691156072718199998516919927872278521697} a^{9} - \frac{779819616613462472722403177071220439107401687474270582069703168836824353945}{56083188426928554407826517469281032066971923279338018181683356357079298047427} a^{8} + \frac{1876506895189700502403164054069126261686470854123233824165678406434126435956}{56083188426928554407826517469281032066971923279338018181683356357079298047427} a^{7} + \frac{27175771395149026014721593558280448260859260990786781152641337046012306150}{56083188426928554407826517469281032066971923279338018181683356357079298047427} a^{6} + \frac{2260613559747176505194305724002583593483073584310902258058557110374244130711}{56083188426928554407826517469281032066971923279338018181683356357079298047427} a^{5} + \frac{2190742393511849651804749112121063832543971450862581325568969533485031290276}{5098471675175323127984228860843730187906538479939819834698486941552663458857} a^{4} - \frac{2474999337272439978437315025506743599447649415722126545502195641087663537578}{5098471675175323127984228860843730187906538479939819834698486941552663458857} a^{3} - \frac{186778474632164245514941799883010993911003289343993487431393866462409041585}{463497425015938466180384441894884562536958043630892712245316994686605768987} a^{2} + \frac{229494053573083122348578892773032013960282122451246702396889634667667198383}{463497425015938466180384441894884562536958043630892712245316994686605768987} a + \frac{75998722749035915039544419406899384363407273789141194515170459400588518059}{463497425015938466180384441894884562536958043630892712245316994686605768987}$
Class group and class number
$C_{2}\times C_{22}\times C_{65584420}$, which has order $2885714480$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 860169583.1577827 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |