Normalized defining polynomial
\( x^{20} + 110 x^{18} + 18755 x^{16} - 1298 x^{15} + 1650440 x^{14} + 428340 x^{13} + 140041165 x^{12} + 2355870 x^{11} + 8914160145 x^{10} + 2600095190 x^{9} + 473766322150 x^{8} + 56156873190 x^{7} + 20204698226075 x^{6} + 2357254937444 x^{5} + 621558092253230 x^{4} - 57940495299390 x^{3} + 14277619259107655 x^{2} - 6064244667019220 x + 165191136108121849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200383030666749741651348266601562500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $462.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(1091,·)$, $\chi_{3300}(2689,·)$, $\chi_{3300}(2879,·)$, $\chi_{3300}(3131,·)$, $\chi_{3300}(3299,·)$, $\chi_{3300}(2341,·)$, $\chi_{3300}(2209,·)$, $\chi_{3300}(611,·)$, $\chi_{3300}(421,·)$, $\chi_{3300}(2929,·)$, $\chi_{3300}(169,·)$, $\chi_{3300}(1451,·)$, $\chi_{3300}(2161,·)$, $\chi_{3300}(371,·)$, $\chi_{3300}(1139,·)$, $\chi_{3300}(2281,·)$, $\chi_{3300}(1849,·)$, $\chi_{3300}(1019,·)$, $\chi_{3300}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{11} a^{7}$, $\frac{1}{11} a^{8}$, $\frac{1}{121} a^{9} - \frac{4}{11} a^{4}$, $\frac{1}{121} a^{10}$, $\frac{1}{121} a^{11}$, $\frac{1}{121} a^{12}$, $\frac{1}{1331} a^{13} + \frac{3}{121} a^{8} + \frac{5}{11} a^{3}$, $\frac{1}{78529} a^{14} - \frac{29}{7139} a^{12} - \frac{4}{7139} a^{10} + \frac{14}{649} a^{8} + \frac{9}{649} a^{6} - \frac{225}{649} a^{4} - \frac{8}{59} a^{2} + \frac{1}{59}$, $\frac{1}{156351239} a^{15} + \frac{58}{14213749} a^{14} + \frac{10}{117469} a^{13} + \frac{1091}{1292159} a^{12} + \frac{3781}{1292159} a^{11} - \frac{8511}{14213749} a^{10} - \frac{3290}{1292159} a^{9} + \frac{7811}{1292159} a^{8} + \frac{151}{117469} a^{7} - \frac{1366}{117469} a^{6} + \frac{30101}{1292159} a^{5} + \frac{2949}{10679} a^{4} - \frac{8858}{117469} a^{3} + \frac{4846}{10679} a^{2} + \frac{4763}{10679} a + \frac{1946}{10679}$, $\frac{1}{156351239} a^{16} + \frac{4}{1292159} a^{14} - \frac{30}{240911} a^{13} - \frac{1581}{1292159} a^{12} + \frac{75}{240911} a^{11} + \frac{5268}{1292159} a^{10} + \frac{52}{21901} a^{9} - \frac{7334}{1292159} a^{8} - \frac{27}{1991} a^{7} + \frac{8123}{1292159} a^{6} - \frac{81}{1991} a^{5} - \frac{31301}{117469} a^{4} - \frac{326}{1991} a^{3} + \frac{875}{10679} a^{2} - \frac{68}{181} a + \frac{1017}{10679}$, $\frac{1}{156351239} a^{17} + \frac{23}{14213749} a^{14} - \frac{5007}{14213749} a^{13} + \frac{57445}{14213749} a^{12} + \frac{1373}{1292159} a^{11} + \frac{1796}{1292159} a^{10} + \frac{4534}{1292159} a^{9} + \frac{10917}{1292159} a^{8} + \frac{26482}{1292159} a^{7} - \frac{3923}{117469} a^{6} + \frac{488}{117469} a^{5} - \frac{24114}{117469} a^{4} + \frac{3939}{117469} a^{3} - \frac{4078}{10679} a^{2} + \frac{2389}{10679} a - \frac{4284}{10679}$, $\frac{1}{534877588619} a^{18} + \frac{9}{48625235329} a^{17} + \frac{58}{48625235329} a^{15} + \frac{25246}{4420475939} a^{14} + \frac{10247405}{48625235329} a^{13} - \frac{8629066}{4420475939} a^{12} + \frac{11941359}{4420475939} a^{11} - \frac{8537839}{4420475939} a^{10} + \frac{938241}{401861449} a^{9} + \frac{119747798}{4420475939} a^{8} + \frac{5952420}{401861449} a^{7} + \frac{74280}{401861449} a^{6} - \frac{12644782}{401861449} a^{5} - \frac{1818171}{36532859} a^{4} + \frac{187861}{619201} a^{3} + \frac{803615}{3321169} a^{2} - \frac{1208220}{3321169} a + \frac{406396}{3321169}$, $\frac{1}{746123430168958945627403939371876094031617948972634798724334765796658603} a^{19} - \frac{640926796541941987524659144280029040525647862302288756673522}{746123430168958945627403939371876094031617948972634798724334765796658603} a^{18} - \frac{26359215662793512268682852333177302037736383902068155802206212}{67829402742632631420673085397443281275601631724784981702212251436059873} a^{17} + \frac{54462957841543442862390659640093666810287330716615106711388552}{67829402742632631420673085397443281275601631724784981702212251436059873} a^{16} - \frac{140016629748298358204440644828163884920917968520418244875531649}{67829402742632631420673085397443281275601631724784981702212251436059873} a^{15} - \frac{295572777264226750374548390440751990132935295513729435191120795287}{67829402742632631420673085397443281275601631724784981702212251436059873} a^{14} - \frac{48221403201850252977365257655628866706123221044893080094674882561}{1149650893942925956282594667753275953823756469911609859359529685356947} a^{13} - \frac{189620659747511471143936181732262639078018636802503151806874725281}{104513717631175086934781333432115995802159679082873623578139062305177} a^{12} - \frac{8912049004033805058241406492663155446849812364163623773731850885879}{6166309340239330129152098672494843752327421065889543791110204676005443} a^{11} + \frac{13893102785341787422987432582161934682563997094783559776067736672476}{6166309340239330129152098672494843752327421065889543791110204676005443} a^{10} + \frac{5340435718032605747238240793255492700335483539378669803027592331301}{6166309340239330129152098672494843752327421065889543791110204676005443} a^{9} - \frac{47360946461772248020384802941023292178176887468215912985785972087424}{6166309340239330129152098672494843752327421065889543791110204676005443} a^{8} + \frac{19987437490415547364856008328476442418143893464585711050239493548624}{560573576385393648104736242954076704757038278717231253737291334182313} a^{7} + \frac{6328566007997849166551926754135173802798759572385804180824785868042}{560573576385393648104736242954076704757038278717231253737291334182313} a^{6} - \frac{1533975315778759034046163214632516237875228210375632057080262009368}{560573576385393648104736242954076704757038278717231253737291334182313} a^{5} - \frac{18073192517847143637156856308190973964826421395549433626487359568389}{50961234216853968009521476632188791341548934428839204885208303107483} a^{4} - \frac{17474249351097109029759442438177760944438281405996498587908939041097}{50961234216853968009521476632188791341548934428839204885208303107483} a^{3} + \frac{26668697090887032940565046107667139235262933405479223586125212554}{4632839474259451637229225148380799212868084948076291353200754827953} a^{2} - \frac{1714844789602956118150983400307752952202097098211416229766797521807}{4632839474259451637229225148380799212868084948076291353200754827953} a + \frac{1948529165278019386166255988027361191045299162627396008671276180644}{4632839474259451637229225148380799212868084948076291353200754827953}$
Class group and class number
$C_{2}\times C_{2}\times C_{1126395820}$, which has order $4505583280$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 655926678.0583006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{20}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.6 | $x^{10} + 216513$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.6 | $x^{10} + 216513$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |