Normalized defining polynomial
\( x^{20} + 220 x^{18} + 12870 x^{16} - 111100 x^{14} - 16032335 x^{12} + 754489384 x^{10} + 31603002640 x^{8} - 1171735656960 x^{6} + 14817146572800 x^{4} + 113417399828480 x^{2} + 361518201831424 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200383030666749741651348266601562500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $462.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(1579,·)$, $\chi_{3300}(2821,·)$, $\chi_{3300}(961,·)$, $\chi_{3300}(1099,·)$, $\chi_{3300}(1741,·)$, $\chi_{3300}(1681,·)$, $\chi_{3300}(1811,·)$, $\chi_{3300}(139,·)$, $\chi_{3300}(1691,·)$, $\chi_{3300}(2719,·)$, $\chi_{3300}(929,·)$, $\chi_{3300}(2659,·)$, $\chi_{3300}(389,·)$, $\chi_{3300}(1769,·)$, $\chi_{3300}(1451,·)$, $\chi_{3300}(749,·)$, $\chi_{3300}(431,·)$, $\chi_{3300}(1271,·)$, $\chi_{3300}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{8} - \frac{1}{32} a^{6} + \frac{1}{64} a^{4} + \frac{1}{16} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} + \frac{1}{128} a^{5} + \frac{1}{32} a^{3}$, $\frac{1}{1408} a^{10} + \frac{7}{128} a^{6} + \frac{1}{64} a^{4} - \frac{5}{16} a^{2}$, $\frac{1}{5632} a^{11} + \frac{1}{512} a^{9} + \frac{5}{512} a^{7} - \frac{13}{512} a^{5} + \frac{3}{128} a^{3} - \frac{1}{8} a$, $\frac{1}{214016} a^{12} - \frac{3}{11264} a^{10} - \frac{1}{1024} a^{8} + \frac{391}{19456} a^{6} + \frac{9}{256} a^{4} + \frac{9}{19}$, $\frac{1}{214016} a^{13} - \frac{1}{11264} a^{11} + \frac{1}{1024} a^{9} + \frac{581}{19456} a^{7} + \frac{5}{512} a^{5} + \frac{3}{128} a^{3} + \frac{53}{152} a$, $\frac{1}{214016} a^{14} + \frac{1}{5632} a^{10} - \frac{21}{4864} a^{8} + \frac{1}{1024} a^{6} + \frac{5}{256} a^{4} + \frac{125}{304} a^{2}$, $\frac{1}{428032} a^{15} - \frac{1}{11264} a^{11} - \frac{1}{4864} a^{9} - \frac{35}{2048} a^{7} + \frac{5}{128} a^{5} + \frac{481}{2432} a^{3} - \frac{3}{8} a$, $\frac{1}{65060864} a^{16} - \frac{13}{16265216} a^{14} + \frac{3}{32530432} a^{12} + \frac{283}{1478656} a^{10} + \frac{25971}{5914624} a^{8} - \frac{35479}{739328} a^{6} - \frac{32085}{369664} a^{4} - \frac{6641}{23104} a^{2} + \frac{115}{361}$, $\frac{1}{109822738432} a^{17} - \frac{13693}{27455684608} a^{15} - \frac{97277}{54911369216} a^{13} + \frac{118633}{27455684608} a^{11} + \frac{28650611}{9983885312} a^{9} - \frac{22791855}{1247985664} a^{7} + \frac{35836875}{623992832} a^{5} - \frac{2183053}{38999552} a^{3} + \frac{31241}{152342} a$, $\frac{1}{454850683676919898824008464192820324335616} a^{18} + \frac{821665682590107221855791577956195}{113712670919229974706002116048205081083904} a^{16} - \frac{113730205683347312391092382714606013}{227425341838459949412004232096410162167808} a^{14} + \frac{31199508625219473341162746797052297}{113712670919229974706002116048205081083904} a^{12} - \frac{139935869089557214777248231677163409807}{454850683676919898824008464192820324335616} a^{10} - \frac{5832483491708673537585099572608988143}{5168757769055907941181914365827503685632} a^{8} - \frac{43041418813625217068404272784899176309}{2584378884527953970590957182913751842816} a^{6} - \frac{12444846238379317769100509862099166429}{161523680282997123161934823932109490176} a^{4} - \frac{950553271995688529289082041051469}{78868984513182189043913488248100337} a^{2} - \frac{179587818737124159498774966802687}{373786656460579094994850655204267}$, $\frac{1}{3638805469415359190592067713542562594684928} a^{19} - \frac{2528717804964688437563329364017}{909701367353839797648016928385640648671232} a^{17} + \frac{1971390510347296723253977674474067811}{1819402734707679595296033856771281297342464} a^{15} + \frac{2045803974097438914289475715282038033}{909701367353839797648016928385640648671232} a^{13} - \frac{89125535092683038099205155877967871183}{3638805469415359190592067713542562594684928} a^{11} + \frac{144865231462362414276192853509996985811}{41350062152447263529455314926620029485056} a^{9} + \frac{115070154635261964319623318649842839619}{20675031076223631764727657463310014742528} a^{7} - \frac{2822765522133700498896189094434803531}{323047360565994246323869647864218980352} a^{5} - \frac{80231168724477646331964919840675009}{382757536215632993274727070929169408} a^{3} - \frac{216929350574722459946220063869320219}{1261903752210915024702615811969605392} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{88059620}$, which has order $2817907840$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1206432246219.7283 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||