Normalized defining polynomial
\( x^{20} + 440 x^{18} + 70950 x^{16} + 5940000 x^{14} + 292248825 x^{12} + 8841854010 x^{10} + 164473920600 x^{8} + 1804275074250 x^{6} + 10579393605000 x^{4} + 27032738744000 x^{2} + 16134802744225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200383030666749741651348266601562500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $462.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(1159,·)$, $\chi_{3300}(3019,·)$, $\chi_{3300}(3101,·)$, $\chi_{3300}(1421,·)$, $\chi_{3300}(1361,·)$, $\chi_{3300}(1939,·)$, $\chi_{3300}(1879,·)$, $\chi_{3300}(281,·)$, $\chi_{3300}(3119,·)$, $\chi_{3300}(2141,·)$, $\chi_{3300}(2279,·)$, $\chi_{3300}(3299,·)$, $\chi_{3300}(359,·)$, $\chi_{3300}(199,·)$, $\chi_{3300}(239,·)$, $\chi_{3300}(3061,·)$, $\chi_{3300}(1021,·)$, $\chi_{3300}(2941,·)$, $\chi_{3300}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{6} - \frac{1}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{3}$, $\frac{1}{5940} a^{10} - \frac{1}{54} a^{8} - \frac{5}{108} a^{6} + \frac{2}{27} a^{4} - \frac{4}{27} a^{2} - \frac{13}{108}$, $\frac{1}{5940} a^{11} - \frac{1}{54} a^{9} - \frac{5}{108} a^{7} + \frac{2}{27} a^{5} - \frac{4}{27} a^{3} - \frac{13}{108} a$, $\frac{1}{17820} a^{12} - \frac{1}{36} a^{8} - \frac{1}{162} a^{6} - \frac{17}{36} a^{2} - \frac{13}{162}$, $\frac{1}{17820} a^{13} - \frac{1}{36} a^{9} - \frac{1}{162} a^{7} - \frac{17}{36} a^{3} - \frac{13}{162} a$, $\frac{1}{53460} a^{14} - \frac{1}{53460} a^{12} + \frac{1}{17820} a^{10} + \frac{19}{972} a^{8} - \frac{10}{243} a^{6} + \frac{17}{324} a^{4} - \frac{317}{972} a^{2} - \frac{91}{243}$, $\frac{1}{53460} a^{15} - \frac{1}{53460} a^{13} + \frac{1}{17820} a^{11} + \frac{19}{972} a^{9} - \frac{10}{243} a^{7} + \frac{17}{324} a^{5} - \frac{317}{972} a^{3} - \frac{91}{243} a$, $\frac{1}{160380} a^{16} + \frac{1}{160380} a^{14} + \frac{1}{160380} a^{12} - \frac{1}{80190} a^{10} - \frac{14}{729} a^{8} - \frac{14}{729} a^{6} + \frac{109}{2916} a^{4} - \frac{229}{1458} a^{2} - \frac{1187}{2916}$, $\frac{1}{160380} a^{17} + \frac{1}{160380} a^{15} + \frac{1}{160380} a^{13} - \frac{1}{80190} a^{11} - \frac{14}{729} a^{9} - \frac{14}{729} a^{7} + \frac{109}{2916} a^{5} - \frac{229}{1458} a^{3} - \frac{1187}{2916} a$, $\frac{1}{8788363487959629652802683654860} a^{18} - \frac{952998680523484152044059}{439418174397981482640134182743} a^{16} - \frac{11828867211907786657889783}{8788363487959629652802683654860} a^{14} - \frac{234322749917926602009439}{72035766294751062727890849630} a^{12} + \frac{33161594873098947808866955}{878836348795962965280268365486} a^{10} - \frac{1383916518653030527148182613}{159788427053811448232776066452} a^{8} + \frac{2012439752500329883427574526}{39947106763452862058194016613} a^{6} + \frac{2428084206175338341053299916}{39947106763452862058194016613} a^{4} - \frac{10758275580749583090537314552}{39947106763452862058194016613} a^{2} - \frac{118524485000507931398938621}{8877134836322858235154225914}$, $\frac{1}{7060246056777711956764522349019294180} a^{19} - \frac{1612367389889918884672455365689}{641840550616155632433138395365390380} a^{17} - \frac{2665300493595954060656064994181}{320920275308077816216569197682695190} a^{15} + \frac{3572649934329812348619230755}{2104395247921821745682420968411116} a^{13} - \frac{10347436382373467755053790877251}{160460137654038908108284598841347595} a^{11} + \frac{3961702461193460587563490517053225}{128368110123231126486627679073078076} a^{9} - \frac{18847125048146023727290337080693}{2917457048255252874696083615297229} a^{7} - \frac{524689748509572101335665195508513}{11669828193021011498784334461188916} a^{5} - \frac{977210701308843026601279740679637}{2917457048255252874696083615297229} a^{3} + \frac{408810680383807703966523676702811}{3889942731007003832928111487062972} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{22}\times C_{279620}$, which has order $1082688640$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65307151733.14945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||