Normalized defining polynomial
\( x^{20} + 44 x^{18} + 770 x^{16} + 6952 x^{14} + 35552 x^{12} + 107712 x^{10} + 196504 x^{8} + 212960 x^{6} + 129712 x^{4} + 38720 x^{2} + 3872 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200317132330035063121671003054276608=2^{55}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(176=2^{4}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{176}(1,·)$, $\chi_{176}(9,·)$, $\chi_{176}(13,·)$, $\chi_{176}(173,·)$, $\chi_{176}(81,·)$, $\chi_{176}(149,·)$, $\chi_{176}(25,·)$, $\chi_{176}(89,·)$, $\chi_{176}(29,·)$, $\chi_{176}(97,·)$, $\chi_{176}(101,·)$, $\chi_{176}(49,·)$, $\chi_{176}(169,·)$, $\chi_{176}(109,·)$, $\chi_{176}(113,·)$, $\chi_{176}(117,·)$, $\chi_{176}(137,·)$, $\chi_{176}(61,·)$, $\chi_{176}(85,·)$, $\chi_{176}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{44} a^{10}$, $\frac{1}{44} a^{11}$, $\frac{1}{88} a^{12}$, $\frac{1}{88} a^{13}$, $\frac{1}{88} a^{14}$, $\frac{1}{88} a^{15}$, $\frac{1}{4048} a^{16} + \frac{1}{2024} a^{14} + \frac{5}{2024} a^{12} + \frac{7}{1012} a^{10} - \frac{2}{23} a^{8} + \frac{3}{23} a^{6} - \frac{7}{46} a^{4} - \frac{4}{23} a^{2} + \frac{5}{23}$, $\frac{1}{4048} a^{17} + \frac{1}{2024} a^{15} + \frac{5}{2024} a^{13} + \frac{7}{1012} a^{11} - \frac{2}{23} a^{9} + \frac{3}{23} a^{7} - \frac{7}{46} a^{5} - \frac{4}{23} a^{3} + \frac{5}{23} a$, $\frac{1}{805552} a^{18} - \frac{45}{805552} a^{16} + \frac{945}{201388} a^{14} - \frac{87}{36616} a^{12} - \frac{340}{50347} a^{10} + \frac{396}{4577} a^{8} - \frac{197}{9154} a^{6} + \frac{126}{4577} a^{4} - \frac{129}{4577} a^{2} + \frac{1950}{4577}$, $\frac{1}{805552} a^{19} - \frac{45}{805552} a^{17} + \frac{945}{201388} a^{15} - \frac{87}{36616} a^{13} - \frac{340}{50347} a^{11} + \frac{396}{4577} a^{9} - \frac{197}{9154} a^{7} + \frac{126}{4577} a^{5} - \frac{129}{4577} a^{3} + \frac{1950}{4577} a$
Class group and class number
$C_{2050}$, which has order $2050$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.247808.2, \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||