Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} - 10 x^{17} + 10 x^{16} - 25 x^{15} + 40 x^{14} - 25 x^{13} + 40 x^{12} - 200 x^{11} + 515 x^{10} - 850 x^{9} + 1050 x^{8} - 1075 x^{7} + 1000 x^{6} - 875 x^{5} + 700 x^{4} - 500 x^{3} + 300 x^{2} - 125 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(200000000000000000000000=2^{24}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{5} a^{12}$, $\frac{1}{5} a^{13}$, $\frac{1}{5} a^{14}$, $\frac{1}{5} a^{15}$, $\frac{1}{75} a^{16} - \frac{1}{15} a^{15} - \frac{1}{15} a^{14} - \frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{2}{5} a^{8} - \frac{1}{3} a^{7} - \frac{1}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{75} a^{17} - \frac{1}{15} a^{12} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{15} a^{9} - \frac{1}{3} a^{8} + \frac{4}{15} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{26925} a^{18} - \frac{29}{26925} a^{17} - \frac{104}{26925} a^{16} - \frac{118}{5385} a^{15} + \frac{296}{5385} a^{14} + \frac{157}{5385} a^{13} - \frac{118}{5385} a^{12} - \frac{488}{5385} a^{11} + \frac{106}{1795} a^{10} + \frac{1324}{5385} a^{9} + \frac{1178}{5385} a^{8} + \frac{2684}{5385} a^{7} - \frac{2416}{5385} a^{6} + \frac{98}{359} a^{5} - \frac{113}{1077} a^{4} + \frac{400}{1077} a^{3} - \frac{253}{1077} a^{2} + \frac{42}{359} a + \frac{173}{359}$, $\frac{1}{2396325} a^{19} + \frac{29}{2396325} a^{18} - \frac{3228}{798775} a^{17} + \frac{827}{159755} a^{16} - \frac{14987}{159755} a^{15} - \frac{44782}{479265} a^{14} + \frac{44888}{479265} a^{13} - \frac{22769}{479265} a^{12} + \frac{2279}{159755} a^{11} - \frac{19363}{479265} a^{10} + \frac{54351}{159755} a^{9} + \frac{1774}{5385} a^{8} - \frac{61162}{159755} a^{7} - \frac{21844}{95853} a^{6} - \frac{23269}{95853} a^{5} - \frac{33079}{95853} a^{4} + \frac{18280}{95853} a^{3} + \frac{7955}{31951} a^{2} + \frac{30803}{95853} a - \frac{3608}{31951}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{200932}{159755} a^{19} - \frac{13016039}{2396325} a^{18} + \frac{1408004}{159755} a^{17} - \frac{1013306}{159755} a^{16} + \frac{254664}{31951} a^{15} - \frac{4134648}{159755} a^{14} + \frac{15493316}{479265} a^{13} - \frac{797455}{95853} a^{12} + \frac{4198858}{95853} a^{11} - \frac{106333924}{479265} a^{10} + \frac{47356628}{95853} a^{9} - \frac{3892834}{5385} a^{8} + \frac{25885224}{31951} a^{7} - \frac{24789995}{31951} a^{6} + \frac{67398476}{95853} a^{5} - \frac{57307868}{95853} a^{4} + \frac{14454758}{31951} a^{3} - \frac{29180228}{95853} a^{2} + \frac{15200710}{95853} a - \frac{1326305}{31951} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13801.9175678 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.200000.1, 10.2.200000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||