Normalized defining polynomial
\( x^{20} - 14 x^{18} + 99 x^{16} - 355 x^{14} + 823 x^{12} - 1103 x^{10} + 2806 x^{8} + 5547 x^{6} + 1536 x^{4} + 128 x^{2} + 64 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1994081282499911259959052849=3^{10}\cdot 179^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} + \frac{3}{16} a^{7} - \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{14} + \frac{1}{32} a^{12} + \frac{1}{32} a^{10} + \frac{3}{32} a^{8} - \frac{1}{4} a^{7} - \frac{5}{32} a^{6} - \frac{5}{32} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{9} + \frac{5}{32} a^{7} + \frac{5}{32} a^{5} - \frac{7}{16} a^{3} - \frac{1}{2}$, $\frac{1}{224} a^{16} + \frac{3}{224} a^{14} - \frac{5}{224} a^{12} + \frac{5}{224} a^{10} + \frac{17}{224} a^{8} - \frac{1}{32} a^{6} - \frac{9}{112} a^{4} + \frac{3}{7} a^{2} + \frac{2}{7}$, $\frac{1}{448} a^{17} - \frac{1}{448} a^{16} - \frac{1}{112} a^{15} - \frac{3}{448} a^{14} - \frac{3}{112} a^{13} + \frac{5}{448} a^{12} - \frac{1}{224} a^{11} - \frac{5}{448} a^{10} - \frac{1}{112} a^{9} + \frac{39}{448} a^{8} - \frac{3}{16} a^{7} + \frac{1}{64} a^{6} + \frac{17}{448} a^{5} + \frac{9}{224} a^{4} - \frac{9}{56} a^{3} + \frac{9}{56} a^{2} - \frac{3}{28} a - \frac{1}{7}$, $\frac{1}{296380041664} a^{18} + \frac{549546605}{296380041664} a^{16} - \frac{1}{64} a^{15} + \frac{154250471}{296380041664} a^{14} - \frac{1}{64} a^{13} - \frac{6213200591}{296380041664} a^{12} - \frac{1}{64} a^{11} + \frac{993056311}{12886088768} a^{10} - \frac{3}{64} a^{9} - \frac{23578878811}{296380041664} a^{8} - \frac{11}{64} a^{7} - \frac{426327375}{3614390752} a^{6} + \frac{5}{64} a^{5} + \frac{16124227}{298169056} a^{4} - \frac{3}{8} a^{3} + \frac{6499677655}{37047505208} a^{2} + \frac{1}{4} a - \frac{1800149376}{4630938151}$, $\frac{1}{296380041664} a^{19} - \frac{4000571}{10585001488} a^{17} + \frac{400071549}{42340005952} a^{15} + \frac{1725550525}{296380041664} a^{13} - \frac{560177603}{12886088768} a^{11} - \frac{1}{8} a^{10} - \frac{20932628439}{296380041664} a^{9} - \frac{1}{8} a^{8} - \frac{652226797}{3614390752} a^{7} + \frac{589132715}{4174366784} a^{5} + \frac{1}{8} a^{4} - \frac{216786129}{1323125186} a^{3} + \frac{1}{8} a^{2} - \frac{292485787}{9261876302} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{16109}{12593696} a^{19} + \frac{251853}{12593696} a^{17} - \frac{1970409}{12593696} a^{15} + \frac{8430907}{12593696} a^{13} - \frac{1017015}{547552} a^{11} + \frac{42507395}{12593696} a^{9} - \frac{40950193}{6296848} a^{7} - \frac{3053}{11086} a^{5} + \frac{47457361}{6296848} a^{3} + \frac{426354}{393553} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6730201.64731 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-179}) \), \(\Q(\sqrt{537}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-179})\), 5.1.32041.1 x5, 10.0.183765996899.1, 10.2.44655137246457.1 x5, 10.0.249470040483.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $179$ | 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |