Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} - 10 x^{17} + 30 x^{16} - 141 x^{15} + 340 x^{14} - 415 x^{13} + 220 x^{12} + 20 x^{11} - 99 x^{10} + 20 x^{9} + 220 x^{8} - 415 x^{7} + 340 x^{6} - 141 x^{5} + 30 x^{4} - 10 x^{3} + 10 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(198839676120293140411376953125=3^{10}\cdot 5^{23}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{42} a^{14} - \frac{1}{42} a^{13} + \frac{1}{7} a^{12} - \frac{17}{42} a^{11} - \frac{1}{6} a^{10} + \frac{1}{7} a^{9} - \frac{17}{42} a^{8} + \frac{11}{42} a^{7} + \frac{2}{21} a^{6} - \frac{5}{14} a^{5} - \frac{1}{6} a^{4} + \frac{2}{21} a^{3} - \frac{5}{14} a^{2} - \frac{1}{42} a - \frac{10}{21}$, $\frac{1}{42} a^{15} + \frac{5}{42} a^{13} + \frac{5}{21} a^{12} + \frac{3}{7} a^{11} - \frac{1}{42} a^{10} + \frac{5}{21} a^{9} - \frac{1}{7} a^{8} + \frac{5}{14} a^{7} + \frac{5}{21} a^{6} + \frac{10}{21} a^{5} - \frac{1}{14} a^{4} + \frac{5}{21} a^{3} - \frac{8}{21} a^{2} - \frac{1}{2} a + \frac{1}{42}$, $\frac{1}{42} a^{16} - \frac{1}{7} a^{13} + \frac{3}{14} a^{12} - \frac{3}{7} a^{10} - \frac{5}{14} a^{9} + \frac{8}{21} a^{8} + \frac{3}{7} a^{7} - \frac{1}{2} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{5}{14} a^{3} + \frac{2}{7} a^{2} - \frac{5}{14} a - \frac{5}{42}$, $\frac{1}{42} a^{17} + \frac{1}{14} a^{13} - \frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{5}{14} a^{10} + \frac{5}{21} a^{9} + \frac{1}{14} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} - \frac{5}{14} a^{4} - \frac{1}{7} a^{3} - \frac{1}{2} a^{2} - \frac{11}{42} a + \frac{1}{7}$, $\frac{1}{48342} a^{18} - \frac{7}{1151} a^{17} - \frac{199}{48342} a^{16} + \frac{35}{6906} a^{15} - \frac{365}{48342} a^{14} - \frac{324}{8057} a^{13} + \frac{7739}{48342} a^{12} + \frac{8257}{48342} a^{11} + \frac{8201}{24171} a^{10} + \frac{3047}{6906} a^{9} - \frac{3357}{16114} a^{8} + \frac{7006}{24171} a^{7} - \frac{1257}{16114} a^{6} + \frac{17623}{48342} a^{5} - \frac{4211}{24171} a^{4} + \frac{1000}{8057} a^{3} - \frac{20917}{48342} a^{2} - \frac{6049}{48342} a - \frac{7481}{24171}$, $\frac{1}{48342} a^{19} - \frac{155}{24171} a^{17} + \frac{220}{24171} a^{16} + \frac{101}{16114} a^{15} + \frac{13}{6906} a^{14} - \frac{11317}{48342} a^{13} - \frac{551}{2302} a^{12} + \frac{11897}{48342} a^{11} + \frac{1331}{6906} a^{10} + \frac{22235}{48342} a^{9} - \frac{2019}{16114} a^{8} + \frac{4385}{48342} a^{7} + \frac{7003}{48342} a^{6} + \frac{281}{2302} a^{5} - \frac{3464}{24171} a^{4} - \frac{4135}{48342} a^{3} + \frac{6873}{16114} a^{2} - \frac{10469}{48342} a + \frac{3502}{8057}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1126766.82054 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.55125.1, 5.1.1378125.1 x5, 10.2.9496142578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1378125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |