Properties

Label 20.0.19635011632...1296.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{48}\cdot 17^{8}$
Root discriminant $16.39$
Ramified primes $2, 17$
Class number $1$
Class group Trivial
Galois group 20T277

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -20, 82, -176, 211, -152, 116, -168, 198, -148, 112, -80, 86, -32, 44, -24, 12, -8, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 6*x^18 - 8*x^17 + 12*x^16 - 24*x^15 + 44*x^14 - 32*x^13 + 86*x^12 - 80*x^11 + 112*x^10 - 148*x^9 + 198*x^8 - 168*x^7 + 116*x^6 - 152*x^5 + 211*x^4 - 176*x^3 + 82*x^2 - 20*x + 2)
 
gp: K = bnfinit(x^20 + 6*x^18 - 8*x^17 + 12*x^16 - 24*x^15 + 44*x^14 - 32*x^13 + 86*x^12 - 80*x^11 + 112*x^10 - 148*x^9 + 198*x^8 - 168*x^7 + 116*x^6 - 152*x^5 + 211*x^4 - 176*x^3 + 82*x^2 - 20*x + 2, 1)
 

Normalized defining polynomial

\( x^{20} + 6 x^{18} - 8 x^{17} + 12 x^{16} - 24 x^{15} + 44 x^{14} - 32 x^{13} + 86 x^{12} - 80 x^{11} + 112 x^{10} - 148 x^{9} + 198 x^{8} - 168 x^{7} + 116 x^{6} - 152 x^{5} + 211 x^{4} - 176 x^{3} + 82 x^{2} - 20 x + 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1963501163244660295991296=2^{48}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6789300084806767} a^{19} + \frac{1366510160732011}{6789300084806767} a^{18} - \frac{2144887904263435}{6789300084806767} a^{17} - \frac{3095087013226192}{6789300084806767} a^{16} - \frac{1480213364282145}{6789300084806767} a^{15} + \frac{2341533955012796}{6789300084806767} a^{14} + \frac{1135297838390002}{6789300084806767} a^{13} + \frac{71306543114263}{219009680155057} a^{12} - \frac{202318786236900}{617209098618797} a^{11} + \frac{1381163236352204}{6789300084806767} a^{10} + \frac{2852908274962402}{6789300084806767} a^{9} + \frac{2795814337980896}{6789300084806767} a^{8} - \frac{1792528393372554}{6789300084806767} a^{7} - \frac{1892103698554002}{6789300084806767} a^{6} - \frac{75214072874318}{157890699646669} a^{5} + \frac{1714001878379466}{6789300084806767} a^{4} + \frac{1888040749650025}{6789300084806767} a^{3} - \frac{9964748147088}{165592684995287} a^{2} - \frac{58297331312365}{165592684995287} a + \frac{2568530587882018}{6789300084806767}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 21981.7646991 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T277:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 48 conjugacy class representatives for t20n277
Character table for t20n277 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 5.1.18496.1, 10.2.175156232192.1, 10.0.87578116096.3, 10.0.43789058048.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$17$17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.6.4.1$x^{6} + 136 x^{3} + 7803$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
17.6.4.1$x^{6} + 136 x^{3} + 7803$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$