Normalized defining polynomial
\( x^{20} - 5 x^{19} - 11 x^{18} + 83 x^{17} + 56 x^{16} - 700 x^{15} + 105 x^{14} + 2882 x^{13} - 1781 x^{12} - 5757 x^{11} + 7777 x^{10} + 3940 x^{9} - 13469 x^{8} - 7812 x^{7} + 52825 x^{6} - 87721 x^{5} + 99762 x^{4} - 30932 x^{3} + 54617 x^{2} - 18028 x + 20591 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19379770369172092530288888794611712=2^{15}\cdot 17^{14}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{26} a^{16} - \frac{2}{13} a^{15} + \frac{5}{13} a^{14} + \frac{2}{13} a^{13} + \frac{4}{13} a^{12} - \frac{9}{26} a^{11} - \frac{2}{13} a^{10} - \frac{7}{26} a^{9} + \frac{5}{26} a^{8} - \frac{9}{26} a^{7} - \frac{5}{26} a^{6} + \frac{7}{26} a^{5} - \frac{1}{2} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} - \frac{1}{26} a - \frac{3}{13}$, $\frac{1}{26} a^{17} - \frac{3}{13} a^{15} - \frac{4}{13} a^{14} - \frac{1}{13} a^{13} - \frac{3}{26} a^{12} + \frac{6}{13} a^{11} + \frac{3}{26} a^{10} + \frac{3}{26} a^{9} + \frac{11}{26} a^{8} + \frac{11}{26} a^{7} - \frac{1}{2} a^{6} - \frac{11}{26} a^{5} + \frac{6}{13} a^{4} - \frac{5}{13} a^{3} + \frac{1}{26} a^{2} - \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{551784748918} a^{18} - \frac{2184537548}{275892374459} a^{17} + \frac{766134484}{275892374459} a^{16} - \frac{117845632919}{551784748918} a^{15} + \frac{123989432690}{275892374459} a^{14} + \frac{178099452723}{551784748918} a^{13} + \frac{14600633575}{275892374459} a^{12} - \frac{233691995283}{551784748918} a^{11} - \frac{100082467280}{275892374459} a^{10} + \frac{226772844203}{551784748918} a^{9} + \frac{1096974657}{21222490343} a^{8} - \frac{7386193432}{21222490343} a^{7} - \frac{104922317699}{275892374459} a^{6} - \frac{197045969411}{551784748918} a^{5} - \frac{244466914719}{551784748918} a^{4} - \frac{81266209610}{275892374459} a^{3} - \frac{97284749610}{275892374459} a^{2} + \frac{12339256312}{275892374459} a - \frac{264658574431}{551784748918}$, $\frac{1}{6701372192474074599802774952767540594} a^{19} - \frac{156632550109553101249637}{257745084325925946146260575106443869} a^{18} + \frac{18169816396434669390439546789536991}{3350686096237037299901387476383770297} a^{17} - \frac{111095958606723417846651540738334993}{6701372192474074599802774952767540594} a^{16} - \frac{525048138351332500858695988377625783}{6701372192474074599802774952767540594} a^{15} + \frac{650916125719494286049455211344641463}{6701372192474074599802774952767540594} a^{14} + \frac{893193506666288233546415686930975045}{3350686096237037299901387476383770297} a^{13} - \frac{1109813369550137537051755518558807687}{6701372192474074599802774952767540594} a^{12} - \frac{382555364811739055762733269512508506}{3350686096237037299901387476383770297} a^{11} + \frac{178932683286519532899723522023089135}{3350686096237037299901387476383770297} a^{10} + \frac{1440609326051312277484999640364559886}{3350686096237037299901387476383770297} a^{9} - \frac{2693320681383649462743144200936788839}{6701372192474074599802774952767540594} a^{8} - \frac{97387380173077178846825445342147627}{515490168651851892292521150212887738} a^{7} + \frac{1487777424623309725613458619775129582}{3350686096237037299901387476383770297} a^{6} + \frac{1541109384152428944949648218674793488}{3350686096237037299901387476383770297} a^{5} + \frac{1616702080879064870392799407430596969}{6701372192474074599802774952767540594} a^{4} + \frac{922276805675277749292591597982802125}{6701372192474074599802774952767540594} a^{3} - \frac{1267519248208603918153657945336442571}{3350686096237037299901387476383770297} a^{2} - \frac{2667060823756809100445012259245325815}{6701372192474074599802774952767540594} a + \frac{1531075082718463130065531434997004389}{6701372192474074599802774952767540594}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7343104.2357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T22):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.2312.1, 5.5.6725897.1, 10.10.769040737728353.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |